Loading...
ST9802-SP 981016WRIGHT CONSTRUCTION C O M PA N Y DATE: OCTOBER 16, 1998 PROJECT TITLE: DRAINAGE AND PAVING IMPROVEMENTS SOUTHWESTERN DRIVE, FREEPORT PARKWAY, AND FROM FRITZ ROAD TO GRAPEVINE CREEK CONTRACT IDENTIFICATION: CONTRACTOR: SUPPLIER: MANUFACTURER: PRODUCT: SITE UTILITIES WRIGHT CONSTRUCTION CO. INC. HYDRO CONDUIT HYDRO CONDUIT BOX CULVERT C - 789 I, t_ (SIGNATURE) A DULY AUTHORIZED REPRESENTATIVE OF Lj eZ 4 147 C O 1A ST. C o __T-MC ((;'ONTRACTOR) DO HEREBY CERTIFY THAT CONTRA TOC R HAS FIELD VERIFtE7 DIMENSIONAL ACCURACIES RELATED TO THIS SUBMITTA AND FURTHER CERTIFY THAT CONTRACTOR HAS MADr A, PROPER EFFORT TO ASSURE THAT THERE ARE NO EXCEP- TIONS TO THE CONTRACT REQUIREMENTS (UNLESS Si ECIFI CALLY IDENTIFIED IN ATTACHED LETTER DATED ; SUBMITTAL DATE 1 Q - 1 ( - cL19 CITY OF COPPELL ,1,i I;� Trl I �jf: C i T Y ' ;F r"01 EI L Liltia;:`v�,L. e DATE Wright Construction Co., Inc. 601 W. Wall 4 Grapevine, TX 76051 • Metro (817) 481.2594 ♦�� Hydro Conduit Reinforced Concrete Boxes t •. t L t SPAN • ' SPAN (ft.) 3 4 5 6 7 8 9 10 2 3 4 5 w 6 ac 7 8 9 10 4 5 6 7 8 8 9 10 WALL & HAUNCH'Y (in.) Note: Numbers in boxes are approximate weights per foot A • : a TYPICAL J01 NT NOTES: 1. Produced to current A.S.T.M. Specification. 2. This drawing is not intended to show reinforcement design– either as to placement or steel area. Actual project specification or current A.S.T.M. specification will govern. 3. Consult Hydro Conduit Corp. local representative for further details not listed on this drawing. DALLAS /FT. WORTH 3 /4 Miles NE from Intersection ofSH114 &135W P.O. Box 1230 Roanoke, Texas 76262 (817) 491 -4321 CR 146 11, 30, 31, 32, 33, 34, 35, 37 Issued 1'89 ommom . 0000..-. ■O :III M .II till .. ■.® Kr till Ill ®® ■-.m •Ill r l l m :r.. ■-.. r l l M M® .-... ', 11 mM ■--...m® wmmm mm.m 4 5 6 7 8 8 9 10 WALL & HAUNCH'Y (in.) Note: Numbers in boxes are approximate weights per foot A • : a TYPICAL J01 NT NOTES: 1. Produced to current A.S.T.M. Specification. 2. This drawing is not intended to show reinforcement design– either as to placement or steel area. Actual project specification or current A.S.T.M. specification will govern. 3. Consult Hydro Conduit Corp. local representative for further details not listed on this drawing. DALLAS /FT. WORTH 3 /4 Miles NE from Intersection ofSH114 &135W P.O. Box 1230 Roanoke, Texas 76262 (817) 491 -4321 CR 146 11, 30, 31, 32, 33, 34, 35, 37 Issued 1'89 ISM Designation: C 789 - 94 Standard Specification for Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers' This standard is issued under the fixed designation C 789; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (t) indicates an editorial change since the last revision or reapproval. 1. Scope 1.1 This specification covers single -cell precast reinforced concrete box sections intended to be used for the construc- tion of culverts and for the conveyance of storm water, industrial wastes, and sewage. 1.2 A complete metric companion to Specification C 789 has been developed —C 789M; therefore, no metric equiva- lents are presented in this specification. NoTa l —This specification is primarily a manufacturing and pur- chasing specification. However, standard designs are included and the criteria used to develop these designs are given in the Appendixes. The successful performance of this product depends upon the proper selection of the box section, bedding, backfill, and care that the installation conforms to the construction specifications. The owner of the precast reinforced concrete box sections specified herein is cautioned that he must properly correlate the loading conditions and the field requirements with the box section specified and provide for inspection at the construction site. Nora 2— Specification C 850 is to be used for box sections with less than 2 It of cover subjected to highway loading. 2. Referenced Documents 2.1 ASTM Standards: A 82 Specification for Steel Wire, Plain, for Concrete Reinforcement A 185 Specification for Steel Welded Wire Fabric, Plain, for Concrete Reinforcement A 496 Specification for Steel Wire, Deformed, for Con- crete Reinforcement A 497 Specification for Steel Welded Wire Fabric, De- formed, for Concrete Reinforcement C 31 Practice for Making and Curing Concrete Test Specimens in the Field C 33 Specification for Concrete Aggregates' C 39 Test Method for Comprehensive Strength of Cylin- drical Concrete Specimens C 150 Specification for Portland Cement° C 309 Specification for Liquid Membrane- Forming Com- pounds for Curing Concrete C 497 Test Methods for Concrete Pipe, Manhole Sections, or Tiles A This specification is under the jurisdiction of ASTM Committee C -13 on Concrete Pipe and is under the direct responsibility of Subcommittee C13.07 on Acceptance Specifications and Precast Concrete Box Sections. Current edition approved July 15, 1994. Published September 1994. Originally published as C 789 - 74. cast previous edition C 789 - 90. s Annual Book of ASTM Standards, Vol 01.04. s Annual Book of ASTM Standards. Vol 04.02. • Annual Book of ASTM Standards, Vol 04.01. 3 Annual Book of ASTM Standards. Vol 04.05. C 595 Specification for Blended Hydraulic Cements° C 618 Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete C 822 Terminology Relating to Concrete Pipe and Related Products C 850 Specification for Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers with Less Than 2 ft of Cover Subjected to Highway Loadings 2.2 AASHTO Standard.• Specifications for Highway Bridges, 1973 Editionb 2.3 ACJ Code. 7 ACI 318 -71 Building Code, 1971 edition 3. Terminology 3.1 Definitions —For definitions of terms relating to con- crete pipe, see Terminology C 822. 4. Types 4.1 Precast reinforced concrete box sections manufac- tured in accordance with this specification shall be of three types identified in Tables 1, 2, and 3 and shall be designated by type, span, rise, and design earth cover. S. Basis of Acceptance 5.1 Acceptability of the box sections produced in accor- dance with Section 7 shall be determined by the results of the concrete compressive strength tests described in Section 10, by the material requirements described in Section 6, and by inspection of the finished box sections. 5.2 Box sections shall be considered ready for acceptance when they conform to the requirements of this specification. 6. Materials 6.1 Reinforced Concrete —The reinforced concrete shall consist of cementitious materials, mineral aggregates and water, in which steel has been embedded in such a manner that the steel and concrete act together. 6.2 Cementitious Materials: 6.2.1 Cement — Cement shall conform to the require- ments for portland cement of Specification C 150 or shall be portland blast- furnace slag cement or portland-pozzolan cement conforming to the requirements of Specification 6 Available from American Association for State Highway Transportation Officials, 444 N Capitol, Washington, DC 20001. r Available from the American Concrete Institute, P.O. Box 19150. Detroit. MI 48219. 164 4,U! C 655M Section 4. Each certification so furnished shall be signed by an authorized agent of the manufacturer. 17. Product Marking 17.1 The following information shall be legibly marked on each section of pipe: 17.1.1 The pipe design strength shall be indicated by the 0.3 -mm crack D -load designated in 5.1.2 followed by the capital letter D and specification designation, 17.1.2 Date of manufacture, 17.1.3 Name or trademark of the manufacturer, 17.1.4 Plant identification, and 17.1.5 One end of each section of pipe designed to bf installed with a particular axis of orientation shall be clearly marked during the process of manufacturing or immediately thereafter on the inside and outside of opposite walls on the vertical axis or shall be designated by location of lift holes. 17.2 Markings shall be indented on the pipe section or painted thereon with water proof paint. 18. Keywords 18.1 concrete pipe - reinforced; culvert; D load; sewer pipe; storm drains; three edge bearing strength APPENDIX (Nonmandatory Information) XI. EXAMPLE CALCULATION X 1.1 As required by 10. 1, the acceptability of a lot of 520 sections of 1350 mm designated inside diameter pipe will be determined in accordance with 4.1.1. The design strength (0.3 -mm crack) D-load is specified as 62 N /linear metre per millimetre of inside designated diameter (62 D pipe). X 1.2 From the lot, randomly select a sample of five specimens (n - 5) each 1.8 in long as shown in Table 2. X1.3 Test the pipe and record the observed values of in kilonewtons which produce the 0.3 -mm crack: 213.5 1, 144.57, 191.27, 200.17, and 180.15. X 1.4 Since in this example X, is in kilonewtons, convert the specification limit L (design strength D -load) to kilonewtons by multiplying the D-load times the designated inside diameter in millimetres times the pipe length in metres, or E X - 929.67 Z X - 175 593.26 (E X - ( 929.67) 2 -864 286.31 X - (EXdn) X - ( 929.67/5) X - 185.93 kN X 1.8 The standard deviation, s, may be computed by either Eq 1 or Eq 2. Since Eq 2 is a simpler form for computation, this will be used. 11-1) s- (Z X,=- (= ,C,)21n11(n- 1) s (175 593.26 - 864 286.31/5)/(5 - 1) s- 1 6 - 84.0 0 s - 26.15 kN L - 62 x 1350 x 1.8 - 150.66 kN X1.5 Since an observed value of the test loads (X, = 144.57) is less than the specification limit (L = 150.66), compliance with the acceptability criteria must be deter- mined in accordance with Section 10. X 1.6 The following values for X and s must be computed: X = average (arithmetic mean) of the observed values X,, and s = estimated standard deviation. X 1.7 Calculate the values for X as follows: X X,? 213.51 45 586.52 144.57 20 900.48 191.27 36 584.21 200.17 40 068.03 180.15 32 454.02 X1.9 The required minimum allowable arithmetic mean X, is computed by Eq 6: X,- L +1.10s X, - 150.66 + 1.10 x 26.15 X, - 179.43 kN Since the actual X of 185.93 kN is greater than the required minimum allowable X, of 179.43 kN, the lot of pipe is acceptable. X 1.10 ASTM STP 15 D is a valuable source of informa- tion regarding statistical procedures and simplified computa- tional methods. 7 Manual on Presentation of Data and Control Chart Analysis. ASTM STP lS D, ASTM, 1976. The American Society for Testing and Materials takes no posalon respectirp the validity of any patent right* asserted in connection with any item nwxkv d in this standard. Uses of this standard am expressly advised that drermaW= Of the vridlty of arty such Patent rights. and the risk of k**V rnsunt of such rights, we wtkuly their own respornibility. This standard is subject to revision r any time by the responsible tecMnieal convnrttee and must be nvnwed every five years and ` - H net revaad, *utter feapprowd or witlthMM. Your cornnerts We invited safnr for Wdion of this standard or for addN&W rand** and should be addfeated to ASTM Headquarters. Your comments wilt rocove careluf consideration r a Meting of the neporWble fechn" uxnanittae, which you may a0end. N you feel thr your comet m haw not recwved a far heanng you should make your views known to the ASTM Committee on Standards. 1916 Asa St., Phdadelphle. PA 19103. Q C 789 MINIMUM LENGTH ` EQUAL TO SPACING OF LONGITUDINAL OUTSIDE LONGITUDINAL WIRES PLUS 2 IN. (Typ) SRE PIC. 3 AND 3A THICKNESS (T) M _� FO R TYPICAL REIN - RCF1 M= ARRANGEMrtfr 1 IN. COVER A•1 A� As2 i 1 IN. COVER H SYM ML- 1 IN. SEE FIG. 2 FOR rRICAL I COVER JOINT REINFORCE-- - RISE (R) AsI MENS THIS AREA I SPAN (S) I I (T) THICKNESS I IN COVE cov Asa _ Ak COVER M OUTSIDE LONGITUDINAL NOTE t — The dmenslon M is the total of the IMoret(cal cut-off length plus the required anchorage. NOTE 2 —The haunch dimension H is equal to the thickness T. FIG. 1 Typical Box Section .. C 595, except that the pozzolan constituent in the Type IP portland pozzolan cement shall be fly ash and shall not exceed 25 % by weight. 6.2.2 Fly Ash —Fly ash shall conform to the requirements of Specification C 618, Class F or Class C. 6.2.3 Allowable Combinations of Cementitious Materi- als —The combination of cementitious materials used in concrete shall be one of the following: 6.2.3.1 Portland cement only. 6.2.3.2 Portland blast furnace slag cement only. 6.2.3.3 Portland pozzolan cement only. 6.2.3.4 A combination of pordand cement and fly ash wherein the proportion of fly ash is between 5 and 25 % by weight of total cementitious material (portland cement plus fly ash). 6.3 Aggregates — Aggregates shall conform to Specifica- tion C 33, except that the requirements for gradation shall not apply. 6.4 Admixtures and Blends— Admixtures and blends may be used with the approval of the owner. 6.5 Steel Reinforcement— Reinforcement shall consist of welded wire fabric conforming to Specifications A 185 or A 497. 7. Design 7.1 Design Tables —The box section dimensions, com- pressive strength of the concrete, and reinforcement details shall be as prescribed in Tables 1, 2, or 3 and Figs. 1, 2, and 3, subject to the provisions of Section 11. Table 1 sections are designed for combined earth dead load and AASHTO HS20 five load conditions. Table 2 sections are designed for combined earth dead load and Interstate five load conditions when the Interstate live loading exceeds the HS20 live loading. Table 3 sections are designed for earth dead load conditions only. Criteria used to develop Tables 1, 2, and 3 are given in Appendix X 1. For modifications to the designs OUTER CAGE CIRCUMFERENTIAL RE- INFORCEMENT AT FEMALE END. 1 IN. COVER k 6 IN. MIN 3 L1Y . UN - (TY0 2 IN. MAX. LONGITUDINAL REINFORCEMENT 1 IN. COVER INNER CAGE - As1 (Top) As3 (Bot.) FIG. 2 Section A -A Top and Bottom Slab Joint Reinforcement C 789 spacers used to position the reinforcement shall not be a As1 cause for rejection. 7.4 Laps, Welds, and Spacing— Splices in the circumfer -___� ential reinforcement shall be made by lapping. The overlap 4 d min Radiu measured between the outermost longitudinal wires of each Top As2 fabric sheet shall not be less than the spacing of the Bat. As longitudinal wires plus 2 in. If A,, is extended and con- nected, welded splices shall be allowed in the connection. A Aso may be lapped and welded at any location or connected by welding at the corners to A and A The spacing center to 4 inches min,. center of the circumferential wires shall not be less than 2 in. for 6 -inch 6 Abov e --� Li 1/2 inches max. nor more than 4 in. The spacing center to center of the Wsl for 4 & 5-inch Walls longitudinal wires shall not be more than 8 in. FIG. 3 Detail Inner Reinforcement - 8. Joints shown in Tables 1, 2, and 3 due to anticipated earth and surcharge loads. different from those used to develop the tables, see Appendix X2. 7.2 Modified and Special Designs —The manufacturer may request approval by the owner of modified designs which differ from the designs in Section 7; or special designs for sizes and loads other than those shown in Tables 1, 2, and 3. NoTe 3—The tabular designs in this specification were prepared according to AASHTO Standard Specifications for Highway Bridges, 1973 Edition. The current Specifications for Highway Bridges allows concrete shear stress criteria that differs from the 1973 criteria. The use of current AASHTO concrete shear stress criteria shall be acceptable by this specification for modified or special designs. 7.3 Placement of Reinforcement —The cover of concrete over the circumferential reinforcement shall be l in., subject to the provisions of Section 11. The inside circumferential reinforcement shall extend into the male portion of the joint, and the outside circumferential reinforcement shall extend into the female portion of the joint. The clear distance of the end circumferential wires shall be not less than 1 h in. nor more than 2 in. from the ends of the box section. Reinforce- ment shall be assembled utilizing any combination of single or multiple layers of welded -wire fabric. A common rein- forcement unit may be utilized for both A (or A and A with the largest area requirement governing, bending the reinforcement 90' at the corners and waiving the extension requirements of Fig. 3. See Fig. 3A. The welded -wire fabric shall be composed of circumferential and longitudinal wires meeting the spacing requirements of 7.4 and shall contain sufficient longitudinal wires extending through the box section to maintain the shape and position of reinforcement. The exposure of the ends of longitudinals, stirrups, and Asl 4 d min. Radius 2 Inches max. Radius Top As2 Bot. Asa Side Aso FIG. 3A Detail Option 8.1 The precast reinforced concrete box sections shall be produced with finale and female ends. The ends shall be of such design and the ends of the box sections so formed that the sections can be laid together to make a continuous line of box sections compatible with the permissible variations given in Section 11. 8.2 Outer cage circumferential reinforcement as shown in Figs. 1 and 2 shall be placed in the top and bottom slabs at the female portion of the joint when A,, is not continuous over the span. The minimum area of such reinforcement in square inches per linear foot of box section length shall be the same as the area specified for A, in Tables 1, 2, and 3. 9. Manufacture 9.1 Mixture —The aggregates shall be sized, graded, pro. portioned, and mixed with such proportions of cementitious materials and water as will produce a homogeneous concrete mixture of such quality that the pipe will conform to the test and design requirements of this specification. All concrete shall have a water- cementitious materials ratio not exceeding 0.53 by weight. Cmentitious materials shall be as specified in 6.2 and shall be added to the mix in a proportion not less than 470 lb /yd unless mix designs with a lower cementitious materials content demonstrate that the quality and perform- ance of the pipe meet the requirements of this specification. 9.2 Curing —The box sections shall be cured for a suffi- cient length of time so that the concrete will develop the specified compressive strength in 28 days or less. Any one of the following methods of curing or combinations thereof may be used: 9.2.1 Steam Curing —The box sections may be low pres- sure, steam -cured by a system that will maintain a moist atmosphere. 9.2.2 Water Curing —The box sections may be water - cured by any method that will keep the sections moist. 9.2.3 Membrane Curing —A sealing membrane con- forming to the requirements of Specification C 309 may be applied and shall be left intact until the required concrete compressive strength is attained. The concrete temperature at the time of application shall be within 107 of the atmospheric temperature. All surfaces shall be kept moist prior to the application of the compounds and shall be damF when the compound is applied. 9.3 Forms —The forms used in manufacture shall be sufficiently rigid and accurate to maintain the box section dimensions within the permissible variations given in Sec- Q C 789 _, Io tion 11. All casting surfaces shall be of smooth nonporous material. 9.4 Handling — Handling devices or holes shall be per- mitted in each box section for the purpose of handling and laying. 10. Physical Requirements 10.1 Type of Test Specimen— Compression tests for deter- mining concrete compressive strength may be made on either standard rodded concrete cylinders or concrete cylin- ders compacted and cured in like manner as the box sections, or on cores drilled from the box section. 10.2 Compression Testing of Cylinders: 10.2.1 Cylinders shall be obtained and tested for compres- sive strength in accordance with the provisions of Practice C 31 and Test Method C 39, except that the cylinders may be prepared by. methods comparable to those used to consoli- date and cure the concrete in the actual box section manufactured. Cylindrical specimens of sizes other than 6 in. by 12 in. may be used provided all other requirements of Practice C 31 are met. If the concrete is of a consistency too still' for compaction by rodding or internal vibration, the following alternative method may be used: Bolt a mold to the top of a vibrating table or to the actual form being used for manufacture. External vibration shall be applied with a frequency of at least 800 vibrations per minute. Place concrete in three equal lifts within the cylinder. During vibration, place a cylindrical hammer on the surface of each lift with the hammer to be 1 /4 inch less in diameter than the inside diameter of the mold and of a weight to create a pressure of 0.353 psi on the surface of the concrete. Continue vibration until cement paste begins to ooze up around the bottom edge of the hammer. Repeat this procedure until the mold is filled. Cylinders shall be exposed to the same curing conditions as the manufactured box sections and shall remain with the sections until tested. 10.2.2 Prepare not less than five test cylinders from each day's production of the lot of box sections. 10.2.3 Acceptability on the Basis of Cylinder Test Results: 10.2.3.1 When the average compressive strength of all cylinders tested is equal to or greater than the design concrete strength, and not more than 10 % of the cylinders tested have a compressive strength less than the design concrete strength, and no cylinder tested has a compressive strength less than 80 % of the design concrete strength, then the lot shall be accepted. 10.2.3.2 When the compressive strength of the cylinders tested does not conform to the acceptance criteria stated in 10.2.3.1, the acceptability of the lot shall be determined in accordance with the provisions of 10.3. 10.3 Compression Testing of Cores: 10.3.1 Cores shall be obtained and tested for compressive strength in accordance with the provisions of Test Methods C 497. 10.3.2 One core shall be cut from a section selected at random from each group of 15 box sections or fraction thereof of a single size from each continuous production run. 10.3.3 Acceptability by Core Tests: 10.3.3.1 The compressive strength of the concrete in each group of box sections defined in 10.1 is acceptable when the core test strengths are equal to or greater than the design concrete strength, r 10.3.3.2 When the compressive strength of the core tested is less than the design concrete strength, the box section from which that core was taken may be recored. When the compressive strength of the recore is equal to or greater than the design concrete strength, the compressive strength of the concrete in that group of box sections is acceptable. 10.3.3.3 When the compressive strength of any recore is less than the design concrete strength, the box section from which that core was taken shall be rejected. Two box sections from the remainder of the group shall be selected at random and one core shall be taken from each. If the compressive strength of both cores is equal to or greater than the design concrete strength, the compressive strength of the remainder of that group of box sections is acceptable. If the compressive strength of either of the two cores tested is less than the design concrete strength, the remainder of the group of box sections shall be rejected or, at the option of the manufac- turer, each box section of the remainder of the group shall be cored and accepted individually, and any of these box sections that have cores with less than the design concrete strength shall be rejected. 10.4 Plugging Core Holes —The core holes shall be plugged and sealed by the manufacturer in a manner such that the box section will meet all of the test requirements of this specification. Box sections so sealed shall be considered as satisfactory for use. 10.5 Test Equipment —Every manufacturer furnishing box sections under this specification shall furnish all facilities and personnel necessary to carry out the tests required. 11. Permissible Variations 11.1 Internal Dimensions —The internal dimensions shall not vary more than 1 % from the design dimensions. The haunch dimensions shall not vary more than 'Ain. from the design dimensions. 11.2 Slab and Wall Thickness —The slab and wall thick- ness shall not be less than that shown in the design by more than 5 % or 3 /16 in., whichever is greater. A thickness more than that required in the design shall not be a cause for rejection. 11.3 Length of Opposite Surfaces— Variations in laying lengths of two opposite surfaces of the box section shall not be more than 1 A in. /ft of internal span, with a maximum of s/s in. for all sizes through 7 ft internal span, and a maximum of 3 /4 in. for internal spans greater than 7 ft, except where beveled ends for laying of curves are specified by the owner. 11.4 Length of Section —The underrun in length of a section shall not be more than 1 A in. /ft of length with a maximum of 1 /: in. in any box section. 11.5 Position of Reinforcement —The maximum variation in the position of the reinforcement for 5 -in. or less slab and wall thicknesses shall be :0 /s in., and for greater than 5 -in. slab and wall thicknesses shall be t 1 /2 in. In no case, however, shall the cover over the reinforcement be less than s/a in., as measured to the internal surface or the external surface. The preceding minimum cover limitation does not apply at the mating surfaces of the joint. 11.6 Area of Reinforcement —The area of steel reinforce- ment shall be the design steel areas as shown in Tables 1, 2, or 3. Steel areas greater than those required shall not be cause 9b c 789 for rejection. The permissible variation in diameter of any wire in finished fabric shall conform to the tolerances prescribed for the wire before fabrication by either Specifica- tions A 82 or A 496 as applicable. 12. Repairs 12.1 Box sections may be repaired, if necessary, because of imperfections in manufacture or handling damage and will be acceptable if, in the opinion of the owner, the repaired box section conforms to the requirements of this specification. 13. Inspection 13.1 The quality of materials, the process of manufacture, and the finished box sections shall be subject to inspection by the owner. . 14. Rejection 14.1 Box sections shall be subject to rejection on account of failure to conform to any of the specification require- ments. Individual box sections may be rejected because of any of the following: 14.1.1 Fractures or cracks passing through the wall, except for a single end crack that does not exceed the depth of the joint, 14.1.2 Defects that indicate mixing and molding, not in compliance with 9. 1, or honeycombed or open texture that would adversely affect the function of the box sections, 14.1.3 The ends of the box sections are not normal to th walls and center line of the box section, within the limits of' variations given in Section 11, except where beveled ends are specified, and 14.1.4 Damaged ends, where such damage would prevent making a satisfactory joint. 15. Product Marking 15.1 The following information shall be legibly marked on each box section by indentation, waterproof paint, or other approved means. 15. 1.1 Box section span, rise, table number, maximum and ntinimum, design earth cover, and specification designa- tion, 15.1.2 Date of manufacture, 15.1.3 Name or trademark of the manufacturer, and 15.1.4 Each section shall be clearly marked by indenta- tion on either the inner or outer surface during the process of manufacture so that the location of the top will be evident immediately after the forms are stripped. In addition, the word "top" shall be lettered with waterproof paint on the inside top surface. 16. Keywords 16.1 concrete box — precast; culvert 4ffO C 789 TABLE 1 Design Requirements for Precast Concrete Box Sections Under Earth Dtrad and H$20 Live Load ConditionsA Nora 1- 4080 earth covers and reinforcement areas are be an the weight of a column of earth over the width of the box section as defined In Appendix Xt. See Appendix X2 for modifications to reinforcement areas for other earth load conditions. Nora 2- Conc d esi g n strength 5000 pal. Design Earth M. min, in. ClrctxnfemdW Reinforcement Areas Design Earth M, min. In. Ctraxnferentld Reinforcement A Cover. tt A., A. A A., Cave. ft A A., Ana A. A.• 3 It by 2 It by 4 Imc 5Itby3itby6in.c 2 17 0.19 0.20 0.21 0.10 2 23 0.26 0.28 0.23 0.14 3 15 0.10 0.11 0.11 0.10 3 21 0.17 0.18 0.18 0.14 4 to 8 15 0.10 0.10 0.10 0.10 4 21 0.14 0.15 0.15 0.14 10 15 0.10 0.11 0.11 0.10 5 20 0.14 0.14 0.15 0.14 12 14 0.10 0.13 0.13 0.10 6 20 0.14 0.15 0.15 0.14 14 14 0.11 0.14 0.14 0.10 8 20 0.14 0.16 0.16 0.14 18 14 0.12 0.16 0.16 0.10 10 20 0.15 0.16 0.19 0.14 18 14 0.13 0.17 0.18 0.10 12 20 0.17 0.20 0.21 0.14 20 14 0.14 0.19 0.19 - -- 0.10 -- - 14 20 0.19 023 0.23 0.14 16 19 021 0.26 0.26 0.14 3 It by 3 It by 4 kt a 18 19 023 028 029 0.14 2 27 0.15 024 025 0.10 3 20 0.10 0.13 0.14 0.10 4 to 6 17 0.10 0.10 0.10 0.10 5 it by 4 It by 6 ln. 8 15 0.10 0.11 0.11 0.10 10 15 0.10 0.12 0.13 0.10 12 15 0.10 0.14 0.14 0.10 2 28 023 0.32 0.27 0.14 14 15 0.10 0.15 0.16 0.10 3 23 0.15 0.20 021 0.14 16 15 0.10 0.17 0.18 0.10 4 to 6 22 0.14 0.16 0.17 0.14 18 15 0.10 0.19 0.19 0.10 8 20 0.14 0.17 0.18 0.14 20 15 0.11 021 021 0.10 10 20 0.14 020 021 0.14 12 20 0.14 022 023 0.14 4 It b y 2 ft by 5 h. 0 14 20 0.16 025 026 0.14 2 19 026 022 020 0.12 16 19 0.18 0.28 029 0.14 3 18 0.15 0.13 0.13 0.17 18 19 0.20 0.31 0.31 0.14 4 to 8 18 0.12 0.12 0.12 0.17 10 17 0.13 0.13 0.14 0.12 12 17 0.15 0.15 0.15 0.12 5 ft by 5 it by 6 in. 14 17 0.17 0.17 0.17 0.19 16 18 17 17 0.19 0.19 0.21 021 0.19 021 0.12 0.12 2 41 0.20 0.35 0.29 0.14 3 29 0.14 0.22 0.23 0.14 4 h by 3 it by 5 l n.c 4 25 0.14 0.18 0.19 0.14 2 22 021 0.27 0.24 0.12 5 24 0.14 0.17 0.18 0.14 3 19 0.13 0.16 0.16 0.12 6 22 0.14 0.17 0.18 0.14 4 18 0.12 0.13 0.13 0.12 8 22 0.14 0.18 0.19 0.14 5 18 0.12 0.12 0.13 0.12 10 21 0.14 021 0.22 0.14 8 17 0.12 0.12 0.13 0.12 12 21 0.14 023 024 0.14 6 17 0.12 0.14 0.14 0.12 14 21 0.14 0.26 0.27 0.14 10 17 0.12 0.15 0.16 0.12 16 21 0.16 0.29 0.30 0.14 12 17 0.12 0.17 0.18 0.12 18 20 0.17 0.32 0.33 0.14 14 17 0.13 0.20 020 0.12 16 17 0.15 0.22 022 0.12 18 17 0.16 0.24 02 4 0.12 6 ft by 3 it by 7 In.c 4 it by 4 it by 5 l n.c 2 34 0.18 0.30 028 0.12 2 29 0.30 0.29 022 0.17 3 24 0.12 0.18 0.18 0.12 3 24 021 0.19 0.18 0.17 4 21 0.12 0.14 0.15 0.12 4 24 0.18 0.17 0.17 0.17 5 20 0.12 0.13 0.14 0.12 5 24 0.17 0.17 0.17 0.17 6 19 0.12 0.14 0.14 0.12 6 23 0.17 0.17 0.17 0.17 8 18 0.12 0.15 0.15 0.12 8 23 0.17 0.18 0.18 0.17 10 18 0.12 0.16 0.17 0.12 10 23 020 0.20 0.21 0.17 12 18 0.12 0.19 0.19 0.12 12 23 023 0.23 024 0.17 14 18 0.12 0.21 021 0.12 14 23 0.26 0.26 0.26 0.17 18 18 0.12 023 0.24 0.12 16 23 028 0.29 0.29 0.17 18 17 0.14 0.25 0. 26 0.12 18 23 0.31 0.32 0. 32 0.170 Q C 789 TABLE 1 Cont inued Deso Earth Cover' ftA M, min, h. ChxxttferontW A Rehtofcwmt Meea' Aa Aa Ai4 Deso Earth Cover, ftA M. min. in. Chx+mfomtW ReWorr ement M ms . As, Aa Aa A., 33 0.17 6 ft by 4 ft by 7 Imc 025 0.17 4 29 7ftby6ftby8h.0 0.22 023 0.17 2 28 0.26 0.33 026 0.17 2 38 0.24 0.39 0.31 0.19 3 25 0.18 022 021 0.17 3 31 0.19 027 026 0.19 4 24 0.17 0.19 0.19 0.17 4 29 0.19 024 025 0.19 5 23 0.17 0.18 0.19 0.17 5 28 0.19 023 025 0.19 6 23 0.17 0.18 0.19 0.17 6 27 0.19 024 0.25 0.19 8 23 0.17 0.20 0.21 0.17 8 26 0.19 026 027 0.19 10 22 0.18 023 024 0.17 10 26 0.19 029 0.30 0.19 12 22 020 026 026 0.17 12 26 020 0.33 0.34 0.19 14 22 022 029 0.30 0.17 14 25 022 0.36 0.38 0.19 16 22 024 0.32 0.33 0.17 16 25 025 0.40 0.42 0.19 18 22 027 0.35 0.36 0.17 18 25 027 0.44 0. 0.19 7ftby7 6ttby5ftby7h.O 2 55 022 0.42 0.33 0.19 2 33 024 0.36 029 0.17 3 38 0.19 0.29 027 0.19 3 27 0.17 024 023 0.17 4 to 6 33 0.19 0.25 027 0.19 4 to 6 25 0.17 020 021 0.17 8 28 0.19 027 029 0.19 8 23 0.17 021 022 0.17 10 27 0.19 0.30 0.32 0.19 10 23 0.17 024 025 0.17 12 27 0.19 0.34 0.36 0.19 12 23 0.17 027 029 0.17 14 27 021 0.37 0.39 0.19 14 23 0.19 0.31 0.32 0.17 D 16 27 0.23 0.41 0.43 0.19 16 22 021 0.34 0.35 0.17 18 22 023 0.37 0.39 0.17 6ft by61tby71n. 2 48 022 0.39 0.31 0.17° 3 33 0.17 028 025 0.17 4 29 0.17 0.22 023 0.17 5 27 0.17 021 022 0.17 8 26 0.17 021 022 0.17 8 25 0.17 022 024 0.17 10 24 0.17 025 027 0.17 12 24 0.17 028 0.30 0.17 14 24 0.17 0.32 0.33 0.17 16 24 0.19 0.35 0.37 0.17 18 23 021 0.38 0.40 0.1 7 0 4 30 7ftby4ft by8h. 0.29 029 0.19 2 32 0.30 0.34 025 0.19 3 27 021 023 021 0.19 4 27 0.19 020 020 0.19 5 26 0.19 020 021 0.19 6 26 0.19 020 021 0.19 8 26 020 022 023 0.19 10 25 023 025 026 0.19 12 25 025 029 0.29 0.19 14 25 028 0.32 0.33 0.19 16 25 0.31 0.38 0.38 0.19 18 25 0.34 0.39 0.40 0.19 7ftby5hby81n. 2 32 027 0.37 028 0.19 3 28 0.19 0.26 0.23 0.19 4 to 6 27 0.19 022 023 0.19 8 26 0.19 0.24 025 0.19 10 25 020 0.27 029 0.19 12 25 022 0.31 0.32 0.19 14 25 025 0.35 0.36 0.19 16 25 027 0.38 0.40 0.19 19 25 0.30 0.42 0.43 0.19 2 35 8ftby4ftby8h.a 0.43 0.32 2 34 0.37 0.40 029 0.19 3 31 027 028 0.24 0.19 4 28 025 0.25 024 0.19 5 28 026 025 026 0.19 6 28 026 026 026 0.19 8 27 028 0.28 029 0.19 10 27 0.32 0.32 0.33 0.19 12 27 0.36 0.36 0.37 0.19 14 27 0.40 0.41 0.42 0.19 8ft by6ftby8h. aft by5ftb 2 2 35 0.34 0.43 0.32 0.19° 3 31. 0.25 0.31 027 0.19 4 28 023 027 027 0.19 5 28 024 027 0.29 0.19 6 27 024 028 029 0.19 8 27 028 0.30 0.32 0.19 10 27 0.29 0.35 0.38 0.19 12 27 0.32 0.39 0.41 0.19 8ft by6ftby8h. 2 36 0.31 0.46 0.35 0.19 3 31 023 0.33 029 0.19 4 30 0.22 0.29 029 0.19 5 29 023 0.29 0.31 0.19 6 28 022 0.30 0.31 0.19 8 27 024 0.32 0.34 0.19 10 27 027 0.37 0.39 0.19 12 27 0.30 0.42 0.43 0.19 Bnby7ft by8 2 41 0.28 0.49 0.38 0.19 3 35 022 0.35 0.32 0.19 4 32 020 0.31 0.31 0.19 5 31 021 0.31 0.33 0.19 6 30 021 0.31 0.34 0.19 8 29 0.22 0.34 0.36 0.19 10 28 025 0.38 0.41 0.19 12 28 0.28 0.43 0.46 0.190 @0 C 789 TABLE 1 Continued Design Earth Cover. ftA M. min, In. Ckmaterentlai ReInfacanent Mesa• A s , AA, A. A,. Design Earth Cover. ft A M. min. In. CYaxn1wentld R*ftmetnent Mean An Aa A.t Aw 8Itby8ftby8in. 10It by5ftby10ln.c 2 61 026 0.51 0.40 0.19 2 41 0.38 0.43 0.31 0.24 3 41 020 0.37 0.34 0.19 3 38 0.30 0.32 027 0.24 4 36 0.19 0.32 0.33 0.19 4 35 029 0.30 028 0.24 5 34 020 0.32 0.35 0.19 5 34 0.31 0.30 0.30 0.24 6 32 020 0.33 0.36 0.19 6 33 0.33 0.32 0.33 0.24 8 31 021 0.35 0.38 0.19 8 33 0.35 0.35 0.36 0.24 10 30 023 0.40 0.43 0.19 10 33 0.40 0.40 0.41 0.24 12 29 026 0.44 0.48 0.19 12 33 0.45 0.45 0.46 0.24 14 33 0.50 0.50 0.51 0.24 9 ft by 5 ft by 9 i n.0 10 it by 6 ft by 10 In.c 2 3 38 34 0.36 028 0.43 0.32 0.31 027 0.220 0.220 2 41 0.35 0.46 0.34 0.24 4 31 026 028 027 0.220 3 37 029 0.35 0.30 0.24 5 31 0.28 0.29 0.29 0.220 4 34 027 0.32 0.30 0.24 6 30 029 0.30 0.31 0.220 5 33 029 0.33 0.33 0.24 8 30 0.30 0.32 0.34 0.220 6 8 33 33 0.31 0.33 0.34 • 0.37 0.36 0.39 0.24 0.24 10 12 30 30 0.34 0.38 0.37 0.42 • 0.39 0.43 0.220 0.220 10 32 0.37 0.42 0.44 0.24 14 29 0.43 0.47 0.48 0.220 12 14 32 32 0.41 0.46 0.48 0.53 0.50 0.55 0.24 0.2 4 0 9 f by 8ftby9h. c 10 ft by7ttby10h.c 2 38 0.33 0.46 0.34 0.22 2 42 0.32 0.49 0.36 0.24 3 34 026 0.34 029 0.220 3 38 027 0.37 0.32 0.24 4 32 024 0.31 0.29 0.220 4 35 026 0.34 0.32 0.24 5 31 026 0.31 0.32 0.22 5 34 027 0.35 0135 0.24 6 30 027 0.32 0.34 0.22 6 34 029 0.36 0.38 0.24 8 30 028 0.35 0.37 0.220 6 33 0.31 0.39 0.42 0.24 10 30 0.31 0.40 0.41 0.220 10 33 0.34 0.45 0.47 0.24 12 29 0.35 0.45 0.47 0.220 12 32 0.38 0.50 0.52 0.24 9 hby7ttby9he lOHby8ttby10Inc 2 41 0.30 0.49 0.37 0.22 2 45 0.31 0.52 0.39 0.24 3 36 024 0.36 0.32 0.22 3 40 026 0.39 0.34 0.24 4 33 023 0.32 0.32 0.220 4 37 0.25 0.36 0.35 0.24 5 32 0.24 0.33 0.34 0.22 5 36 026 0.37 0.38 0.24 6 31 025 0.34 0.36 0.22 g 35 027 0.38 0.41 0.24 8 31 026 0.37 0.39 0.220 8 34 0.29 0.41 0.44 0.24 10 30 029 0.42 0.44 0.220 10 33 0.32 0.47 0.50 0.24 12 30 0.33 0.47 0.49 0.22 12 33 0.38 0.52 0.55 0.2 4 0 9ft by8ftby9h. 10ftby9tt by10h. 2 46 028 0.51 0.39 0.22 2 51 029 0.54 0.42 0.24 3 39 023 0.38 0.34 0.22 3 44 0.24 0.41 0.37 0.24 4 38 0.22 0.34 0.34 0.22 4 40 0.24 0.37 0.37 024 5 34 023 0.35 0.37 0.22 5 38 025 0.38 0.40 0.24 6 33 024 0.35 0.38 0.22 6 37 020 0.40 0.43 0.24 8 32 025 0.38 0.41 0.22 8 36 028 0.43 0.46 0.24 10 31 028 0.43 0.46 0.22 10 35 0.31 0.48 0.52 0.24 12 31 0.31 0.49 0.52 0.22 12 34 0.34 0.54 0.58 0.24 9ftby9ft by9in 10ft by10ftby10h. 2 68 027 0.54 0.42 0.22 2 75 029 0.56 0.44 0.24 3 45 0.22 0.40 0.36 0.22 3 50 0.24 0.43 0.39 0.24 4 41 0.22 0.36 0.36 0.22 4 45 0.24 0139 0.39 0.24 5 38 0.22 0.36 0.39 0.22 5 42 0.24 0.40 0.42 0.24 6 36 023 0.37 0.40 0.22 8 40 025 0.41 0.45 0.24 8 34 0.24 0.40 0.43 0.22 8 38 027 0.44 0.48 0.24 10 33 026 0.45 0.48 0.22 10 37 0.30 0.50 0.54 0.24 12 33 0.29 0.50 0.54 0 .22 0 12 38 0.33 0.55 0.60 0.24 1,1 4D C 789 TABLE 1 Cont inued Design Earth M. min, In. Cinmolerentld Reinforcement Areasa Design Earth M. min. In. Circumferential Reinforcement Arease Cover. ftA A,, A.2 Au A.4 Cover. ftA A,, A, A, A,4 11It by4ftby11irt.c 12 ft by 4 It by 12 in. c 2 45 0.44 0.40 0.27 0.26 2 50 0.46 0.41 0.29 0.29 3 43 0.35 0.30 0.26° 0.26 3 47 0.38 0.31 0.29 0.29 4 42 0.35 0.28 0.26 026 4 45 0.38 0.29 0.29 0.29 5 39 0.37 0.29 0.28 0.26 5 43 0.41 0.30 0.29 0.29 6 38 0.39 0.30 0.30 0.26 6 42 0.43 0.31 0.31 0.29 8 38 0.43 0.33 0.34 0.26 8 41 0.49 0.35 0.36 0.29 10 37 0.49 0.38 0.39 0.26 10 41 41 0.55 0.62 0.40 0.45 0.41 0.46 0.29 0.29 12 14 37 37 0.55 0.43 0.62 0.48 0.44 0.49 0.26 026 12 14 41 0.70 0.50 0.51 0.29 16 37 0.69 0.53 0.54 026 16 41 0.78 0.55 0.57 0.29 11 ft by6It by11in.c 12 ft by 6 ft by 12 in.c 2 44 0.37 0.46 0.33 0.26 2 47 0.39 0.47 0.33 0.29 3 41 0.31 0.35 0.30 0.26 3 44 0.33 0.36 0.30 0.29 4 38 0.30 0.33 0.30. 0.26 4 41 0.33 0.34 0.31 0.29 5 36 0.32 0.34 0.33 0.26 5 6 39 39 0.35 0.38 0.35 0.37 0.34 0.37 • 0.29 0.290 6 8 36 36 0.34 0.35 0.37 0.39 0.36 0.41 0.26 0.26 8 39 0.42 0.41 0.43 0.29 10 35 0.42 0.44 0.46 0.26 10 12 39 38 0.47 0.53 0.47 0.53 0.49 0.55 0.29 0.29 12 14 35 35 0.46 0.50 0.52 0.56 0.52 0.58 026 0.26 14 38 0.59 0.59 0.61 0.29 16 35 0.57 0.62 0.64 0.26 16 38 0.65 0.65 0.67 0.29 11 ft by8It by11ln.0 12ft by8It by12in.c 2 46 0.33 0.51 0.38 0.26 2 48 44 0.35 0.31 0.52 0.40 0.38 0.35 0.29 0.29 3 4 41 39 028 0.39 027 0.36 0.34 0.35 0.26 0.26 3 4 41 0.30 0.38 0.36 029 5 37 029 0.38 0.38 0.26 5 40 39 0.32 0.34 0.39 0.41 0.39 0.42 0.29 0.29 6 8 37 36 0.30 0.39 0.33 0.43 0.41 0.46 0.26 0.26 6 8 39 0.38 0.46 0.48 029. 10 36 0.37 0.48 0.51 0.26 10 38 38 0.42 0.46 0.52 0.58 0.55 0.61 0.29 0.29 12 35 35 0.41 0.54 0.45 0.61 0.57 0.64 026 0.26 12 14 38 0.52 0. 0.68 0.29 14 12nbytohby12Imc 11hby10nby111n.c 2 56 0.30 0.55 0.43 0.26 2 3 55 48 0.33 0.29 0.56 0.44 0.43 0.39 0.29 0.29 3 4 48 44 0.26 0.42 0.26 0.39 0.38 0.38 0.26 0.26 4 44 0.29 0.41 0.40 0.29 5 42 0.26 0.40 0.42 0.26 5 43 0.29 0.32 0.43 0.44 0.43 0.47 0.29 0.29 6 8 40 39 0.28 0.42 0.30 0.45 0.45 0.49 0.26 0.26 6 8 42 40 0.35 0.49 0.53 0.29 10 38 0.34 0.51 0.55 0.26 10 40 39 0.38 0.42 0.55 0.61 0.59 0.66 0.29 0.29 12 14 37 37 0.37 0.57 0.41 0.64 0.62 0.68 0.26 0.26 12 14 39 0.47 0.68 0.73 0.29 11 It by11 ft by11 in.c 12ttby12ftby12Inc 2 82 0.30 0.57 0.45 0.26 2 89 0.32 0.29 0.60 0.47 0.48 0.43 0.29 0.29 3 55 026 0.44 0.26 0.41 0.40 0.40 026 0.26 3 4 60 53 0.29 0.44 0.43 0.29 4 5 48 46 0.26 0.42 0.43 026 5 50 0.29 0.45 0.47 0.50 0.29 0.29 6 44 027 0.43 0.47 0.26 6 8 48 45 0.29 0.33 0.47 0.51 0.57 0.29 8 10 41 40 029 0.46 0.33 0.52 0.51 0.57 0.26 0.26 10 44 0.36 0.57 0.63 0.29 12 39 0.36 0.58 0.63 0.26 12 43 42 0.40 0.44 0.64 0.70 0.70 0.77 0.29 0.29 14 39 0.40 0.64 0.70 0.26 14 " The design earth cover Indicated is the height of fig above the top of the box section. Design requirements ere based on the Material and soil properON. loading data. and typical section as 4tcr,rded In Appendix X1. For dtemative or special designs see 7.2. those locations which are Indicated on the typical section ir"Wad In Appendix X1. a Design steel arse in square inches per Wow foot of box section at Honzontd Span in feet) by (Interior Vertical Rise In feet) by (Wag and Slab Thldw*33 c The top section designation, for example. 31t by 2 It by 4 In.. indicates (Interior in itches). 0 MWrruun practical steel area is 3ped6ed• Q c 789 TABLE 2 Design Requirements for Precast Concrete Box Sections Under Earth Dead and interstate Live Load Conditions" Nois 1 - 4ee0 sum covers snd rWnb=mwlt was we based an the weight of a cakxrin of earth over the width of the box section u defined ki Appvdix XI. See Appendlx X2 for rtad*Adom to rehftowrat arses for other wM tad condldons. 0.32 0.27 2 27 0.15 0.24 NoTa 2 -4mrow design stnrpth 5000 pd. 0.10 3 '20 0.10 0.13 0.14 EwM Craxeiersntw R4hkwcemsnt Amass peso � M, min, h CirWnfareneal Rehforewmit Areas• Cover, , ftA M ' ' �' A., Ap A A COW. ftA 8 A'1 A.a Aa A" 3itby2nby4Imc 10 15 5ftby3ftby8hQ 0.13 0.10 2 17 0.19 0.20 0.21 0.10 2 23 0.26 0.28 0.24 0.14 3 15 0.10 0.11 0.11 0.10 3 21 0.17 0.18 0.18 0.14 4 to 8 15 0.10 0.10 0.10 0.10 4 21 0.14 0.15 0.15 0.14 10 14 0.10 0.11 0.12 0.10 5 20 0.14 0.14 0.15 0.14 12 14 0.10 0.13 0.13 0.10 6 20 0.14 0.15 0.15 0.14 14 14 0.10 0.14 0.14 0.10 8 20 0.14 0.17 0.17 0.14 18 14 0.12 0.16 0.16 0.10 10 20 0.16 0.16 0.19 0.14 18 14 0.13 0.18 0.18 0.10 12 20 0.17 0.21 0.21 0.14 20 14 0.15 0.19 0.19 0.10 14 20 0.19 0.23 0.23 0.14 0.12 16 19 0.22 0.26 0.26 0.14 18 19 0.24 0.29 029 0.1 5ftby by6h. 2 28 3 ft by 3 ft by 4 Kc 0.32 0.27 2 27 0.15 0.24 0.25 0.10 3 '20 0.10 0.13 0.14 0.10 4 to 6 18 0.10 0.10 0.11 0.10 8 15 0.10 0.11 0.12 0.10 10 15 0.10 0.13 0.13 0.10 12 15 0.10 0.14 0.14 0.10 14 15 0.10 0.15 0.16 0.10 16 15 0.10 0.17 0.18 0.10 16 15 0.10 0.19 0.20 0.10 20 15 0.11 0.21 0.21 0.10 0.13 0.20 4ftby211 by5h. 0.12 16 2 19 0.25 0.22 0.20 0.12 3 18 0.15 0.13 0.13 0.12 4106 18 0.12 0.12 0.12 0.12 6 17 0.13 0.12 0.12 0.12 10 17 0.14 0.14 0.14 0.12 12 17 0.15 0.15 0.15 0.12 14 17 0.17 0.17 0.17 0.12 16 17 0.19 0.19 0.19 0.12 18 17 0.21 0.21 0.2 0.12 18 19 0.24 0.29 029 0.1 5ftby by6h. 2 28 4ftby3Itby5IMO 0.32 0.27 2 22 0.21 0.27 0.24 0.12 3 19 0.13 0.16 0.16 0.12 4 /8 0.12 0.13 0.13 0.12 5 18 0.12 0.12 0.13 0.12 6 17 0.12 0.13 0.13 0.12 8 17 0.12 0.14 0.15 0.12 10 17 0.12 0.16 0.16 0.12 12 17 0.12 0.18 0.18 0.12 14 17 0.13 0.20 0.20 0.12 16 17 0.15 0.22 0.23 0.12 18 17 0.16 0.24 0.25 0. 12 0 2 41 4ft by4ft by5h. 0.35 0.30 2 34 0.18 0.30 0.28 0.12 3 24 0.12 0.18 0.18 0.12 4 21 0.12 0.14 0.15 0.12 5 20 0.12 0.14 0.14 0.12 6 19 0.12 0.14 0.15 0.12 8 18 0.12 0.15 0.16 0.12 10 /8 0.12 0.17 0.18 0.12 12 18 0.12 0.19 0.19 0.12 14 18 0.12 0.21 0.21 0.12 16 18 0.13 0.23 029 0.12 in 17 n u 0.26 0.26 0.12 18 19 0.24 0.29 029 0.1 5ftby by6h. 2 28 0.23 0.32 0.27 0.14 3 23 0.15 020 0.21 0.14 4 22 0.14 0.16 0.17 0.14 5 21 0.14 0.16 0.17 0.14 6 21 0.14 •0.17 0.17 0.14 8 20 0.14 0.18 0.19 0.14 10 20 0.14 0.20 0.21 0.14 12 20 0.15 0.23 0.23 0.14 14 20 0.16 0.25 0.26 0.14 16 19 0.18 0.28 0.29 0.14 18 19 0.20 0.31 0.32 0.14 5ftby5ftby6h.c 2 41 0.20 0.35 0.30 0.14 3 29 0.14 0.22 0.23 0.14 4 25 0.14 0.18 0.19 0.14 5 24 0.14 0.17 0.18 0.14 6 22 0.14 0.18 0.19 0.14 8 22 0.14 0.19 0.20 0.14 10 21 0.14 0.21 0.22 0.14 12 21 0.14 0.24 025 0.14 14 21 0.14 0.26 0.27 0.14 16 21 0.16 0.29 0.31 0.14 18 20 0.18 0.32 0.33 0.14 8ftby3ftby7h. 2 29 0.31 0.29 0.27 0.17 3 24 0.21 0.19 0.18 0.17 4 24 0.18 0.17 0.17 0.17 5 24 0.17 0.17 0.17 0.17 6 23 0.18 0.17 0.17 0.17 8 23 0.19 0.19 0.19 0.17 10 23 0.21 0.21 0.21 0.17 12 23 0.23 0.23 0.24 0.17 14 23 0.26 0.26 0.26 0.17 16 23 0.29 0.29 0.30 0.17 18 23 0.32 0.32 0. 33 0.170 Q C 789 TABLE 2 Continued Design Earth CO,W. ftA M. min. In. Ckt nferentW Ralnfacament Areas• A A, A., A, - Design Earth cover, ft A M. min. in. CImmnferential Relnf Areas A., Ai, Ass A.. 8ttby4ftby7in 7ft by6ftby81n. 2 28 0.27 0.33 0.31 0.17 2 38 0.28 0.39 0.40 0.19 3 25 0.18 0.22 0.21 0.17 3 31 0.19 0.27 028 0.19 4 24 0.17 0.19 0.19 0.17 4 29 0.19 0.24 025 0.19 5 23 0.17 0.18 0.19 0.17 5 28 0.19 024 0.25 0.19 6 23 0.17 0.19 0.20 0.17 6 27 0.19 024 026 0.19 8 23 0.17 0.21 0.22 0.17 8 26 0.19 027 028 0.19 10 22 0.18 023 0.24 0.17 10 26 0.19 0.30 0.31 0.19 12 22 020 026 0.27 0.17 12 26 0.21 0.33 0.34 0.19 14 22 0.22 029 0.30 0.17 14 25 022 0.36 0.38 0.19 16 22 0.25 0.32 0.33 0.17 16 25 0.25 0.41 0.42 0.19 18 22 027 0.36 0.37 0. 170 7 tt by 7 t by 8 imc 8 ft by 5 ft by 7 n.c - - 2 55 026 0.42 0.43 0.19 2 33 025 0.36 0.34 0.17 3 38 0.19 0.29 0.30 0.19 3 27 0.17 0.24 023 0.17 4 33 0.19 0.25 027 0.19° 4 25 0.17 020 021 0.17 5 31 0.19 0.25 027 0.19 5 24 0.17 0.20 021 0.17 6 30 0.19 0.26 028 0.19 6 24 0.17 021 022 0.17 8 28 0.19 028 0.30 0.19 8 23 0.17 022 0.23 0.17 10 27 0.19 0.31 0.33 0.19 10 23 0.17 025 026 0.17 12 27 0.19 0.34 0.36 0.19 12 23 0.18 028 029 0.17 14 27 0.21 0.37 0.40 0.19 14 23 0.19 0.31 0.32 0.17 16 27 023 0.42 0. 0.19 16 18 22 22 022 0.2 0.34 0.38 0.36 0 .39 0.17° 0.170 8 ft by 4 h by 8 in. c 6 h by 6 h by 7 In.c 2 34 0.43 0.40 0.38 0.19 3 31 0.31 0.28 0.29 0.19 2 48 023 0.39 0.37 0.170 4 28 027 0.25 026 0.19 3 33 0.17 0.26 0.26 0.170 5 28 027 0.25 0.26 0.19 4 29 0.17 0.22 0.23 0.17 6 28 0.27 0.26 027 0.19 5 27 0.17 021 0.23 0.17 8 27 0.30 029 0.30 0.19 6 26 0.17 022 0.23 0.170 10 27 0.33 0.33 0.34 0.19 8 25 0.17 0.23 0.25 0.170 12 27 0.36 0.36 0.37 0.19 10 24 0.17 026 0.27 0.17 12 24 0.17 0.29 0.30 0.17 8 tt by 5 ft by 8 In.c 14 24 0.17 0.32 0.33 0.170 2 35 0.38 0.43 0.42 0.19 16 24 020 0.36 0.37 0.170 3 31 029 0.31 0.32 0.19 18 23 021 0.39 0.41 0.170 4 28 0.25 027 026 0.19 7 h by 4 it by 8 In.c 5 28 0.25 028 029 0.19 2 32 0.34 0.34 0.33 0.190 8 a 27 27 0.25 0.27 029 0.32 0.30 0.33 0.19 0.19 3 4 27 27 023 0.20 023 0.20 0.23 0.21 0.190 0.190 10 27 0.30 0.35 0.37 0.19 0.19 5 26 020 0.20 0.21 0.191D 12 27 0.33 0.40 0.41 6 26 0.20 0.21 0.22 0.19 8 ft by 6 tt by 8 in.c 8 10 26 25 021 023 0.23 026 0.24 027 0.19 0.190 2 36 0.35 0.47 0.46 0.19 12 25 025 0.29 0.30 0.190 3 4 31 30 027 023 0.33 0.29 0.35 0.31 0.19 0.19 14 16 25 25 028 0.32 0.32 0.36 0.33 0.37 0.190 0.190 5 29 023 0.30 0.31 0.19 18 25 0.35 0.40 0.41 0.19 6 8 26 27 023 0.25 0.31 0.34 0.32 0.35 0.19 0.19 7 ft by 5 tt by 8 in.c 10 27 0.27 0.38 0.39 0.19 2 34 0.31 0.37 0.37 0.19 12 27 0.30 0.42 0.44 0.19 3 28 021 026 0.26 0.190 8 tt by 7 tt by 8 In.c 4 5 27 26 0.19 0.19 0.22 022 0.23 0.23 0.19 0.19 2 41 0.33 0.50 0.49 0.19 6 26 0.19 0.23 024 0.19 3 35 0.25 0.35 0.38 0.19 0.19 8 26 0.19 025 0.26 0.19 4 32 022 0.31 0.33 0.19 10 12 25 25 021 023 028 0.31 0.29 0.32 0.19 0.19 5 6 31 30 022 0.22 0.31 0.32 0.34 0.35 0.19 14 25 025 0.35 0.36 0.19 8 29 0.23 0.35 0.38 0.19 0.19 18 25 0.28 0.39 0.40 0.19 10 28 0.25 0.39 0.42 0.190 18 25 0.31 0.43 0.44 0.19 12 28 0.28 0.44 0.46 go C 789 2 38 0.43 0.45 TABLE 2 Continued 3 34 0.33 0.33 Design Earth M. min. in. Cir wnferentlal Reinforcement Areas• Design Earth M. min, in. Ucurnferential Reinforcement Arelsa Cover. ft" 0.22 A„ A A, A.. Cover. ft" 0.31 An A, A, Aa 0.30 0.31 8It by8ftby8Inc 0.22 8 30 0.32 10 ftby5ftby10 h. 0.35 0.22 2 61 0.31 0.53 0.52 0.19 2 41 0.47 0.46 0.40 0.24 3 41 0.24 0.37 0.40 0.19 3 38 0.36 0.34 0.33 0.24 4 36 0.21 0.33 0.35 0.19 4 35 0.34 0.31 0.32 0.24 5 34 0.20 0.33 0.36 0.19 5 34 0.34 0.32 0.33 0.24 6 32 0.21 0.34 0.37 0.19 6 33 0.34 0.33 0.34 0.24 8 31 0.22 0.37 0.40 0.19 8 33 0.37 0.36 0.37 0.24 10 30 0.24 0.41 0.43 0.19 10 33 0.41 0.40 0.42 0.24 12 29 0.26 0.45 0.48 0.19 12 33 0.45 0.45 0.46 0.24 0.29 0.38 9ftby5ft by9in.c 0.22 4 33 026 10ftby6ft by10ln. 0.36 0.22 2 38 0.43 0.45 0.41 0.22 3 34 0.33 0.33 0.33 0.22 4 31 029 0.29 0.30 0.22 5 31 0.29 0.30 0.31 0.22 6 30 0.30 0.31 0.32 0.22 8 30 0.32 0.34 0.35 0.22 10 30 0.35 0.38 0.39 0.22 12 30 0.39 0.42 0.44 0.22 9ftby6It by9in. 2 2 38 0.40 0.48 0.45 0.22 3 34 0.30 0.35 0.36 0.22 4 32 0.27 0.31 0.33 0.22 5 31 0.27 0.32 0.34 0.22 6 30 0.28 0.33 0.35 0.22 8 30 0.29 0.36 0.38 0.22 10 30 0.32 0.40 0.42 0.22 12 29 0.36 0.45 0.47 0.22 10 tt by 10 tt by 9ftby7ftby91n. 2 2 41 0.37 0.52 0.48 0.22 3 36 0.29 0.38 0.39 0.22 4 33 026 0.33 0.36 0.22 5 32 026 0.34 0.36 0.22 6 31 0.26 0.35 0.37 0.22 8 31 0.28 0.36 0.41 0.22 10 30 0.30 0.42 0.45 0.22 12 30 0.33 0.47 0.50 0.22 9hby8ttby9In.c 2 46 0.35 0.54 0.51 0.22 3 39 0.27 0.40 0.42 0.22 4 36 0.24 0.35 0.38 0.22 5 34 0.24 0.36 0.38 0.22 8 33 025 0.37 0.39 0.22 8 32 0.26 0.40 0.43 0.22 10 31 0.28 0.44 0.47 0.22 12 31 0.31 0.49 0.52 0.22 9 tt by 9 tt by 9 in. 2 68 0.33 0.57 0.55 0.22 3 45 0.26 0.42 0.44 0.22 4 41 0.23 0.37 0.40 0.22 5 38 0.23 0.37 0.40 0.22 6 36 0.23 0.38 0.42 0.22 8 34 0.25 0.41 0.45 0.22 10 33 0.27 0.45 0.49 0.22 12 33 0.30 0.50 0.54 0.22 2 41 0.44 0.49 0.44 0.24 3 37 0.34 0.37 0.36 0.24 4 -- _ - ---34 -__ 0.31 0.33 0.35 0.24 5 33 0.31 0.34 0.36 0.24 6 33 0.32 0.35 0.37 0.24 8 33 0.34 0.39 0.41 024 10 32 ' 0.38 0.43 0.45 0.24 12 32 0.41 0.48 0.50 0.24 10 It by7it by10in. 2 42 0.41 0.53 0.47 0.24 3 38 0.32 0.39 0.39 0.24 4 35 0.30 0.36 0.38 0.24 5 34 0.30 0.36 0.38 0.24 6 34 0.30 0.37 0.40 0.24 8 33 0.32 0.41 0.43 0.24 10 33 0.35 0.46 0.46 0.24 12 32 0.39 0.51 0.53 0.24 0.51 0.24 10ft by8ftby101n. 33 0.36 2 45 0.38 0.56 0.51 0.24 3 40 0.30 0.41 0.42 0.24 4 37 028 0.38 0.40 0.24 5 36 028 0.38 0.41 0.24 6 35 029 0.39 0.42 0.24 8 34 0.31 0.43 0.46 024 10 33 0.33 0.48 0.51 0.24 12 33 0.36 0.53 0.56 0.24 10 It by9ttby10ln. 2 51 0.36 0.59 0.54 0.24 3 42 029 0.44 0.45 0.24 4 40 027 0.39 0.43 0.24 5 38 0.27 0.40 0.43 0.24 6 37 027 0.41 0.44 0.24 8 35 029 0.45 0.48 0.24 10 35 0.32 0.49 0.53 0.24 12 34 0.35 0.54 0.58 0.24 10 tt by 10 tt by 10 In.O 2 75 0.35 0.61 0.57 0.24 3 50 0.28 0.46 0.47 0.24 4 45 0.26 0.41 0.45 0.24 5 42 0.26 0.41 0.46 0.24 8 40 0.26 0.43 0.47 0.24 8 38 0.28 0.46 0.50 0.24 10 37 0.30 0.51 0.55 0.24 12 36 0.33 0.56 0.60 0.240 qb C 789 TABLE 2 Continued Design Earth M, min, In. Ckamfemtial Reinforcement Arease Design Earth M. min, In. Ckcumferentlal Reinforcement Areass Cover, ftA A., A, A, A,� Cover, ftA A A, A, A,. 11 ft by 4 it by 11 In.c 12 ft by 4 ft by 12 in.c 2 45 0.54 0.43 0.35 0.26 2 50 0.58 0.44 0.35 0.29 3 43 0.43 0.32 0.30 0.26 3 47 0.46 0.33 0.30 0.29 4 41 0.40 0.29 0.30 0.26 4 45 0.43 0.31 0.30 0.29 5 39 0.41 0.30 0.31 0.26 5 43 0.46 0.32 0.33 0.29 6 38 0.42 0.31 0.32 0.26 6 42 0.47 0.33 0.34 0.29 8 38 0.45 0.34 0.36 0.26 8 41 0.51 0.36 0.37 029 10 37 0.51 0.39 0.40 0.26 10 41 0.57 0.41 0.42 0.29 12 37 0.57 0.44 0.45 0.26 12 41 0.64 0.46 0.47 029 14 37 0.64 0.49 0.50 0.26 14 41 0.72 0.51 0.52 0.29 16 37 0.71 0.54 0.55 0.26 16 41 0.80 0.56 0.58 0.29 11 ftby6ftbyll in.c 12ft by6it by121n.c 2 44 0.46 0.50 0.43 0.26 2 47 0.50 0.51 0.42 029 3 41 0.37 0.38 0.36 0.26 3 44 0.40 0.39 0.36 0.29 4 38 0.35 0.35 0.35 0.26 4 41 0.38 0.36 0.36 0.29 5 36 0.36 0.36 0.37 0.26 5 39 0.40 0.38 0.39 0.29 6 36 0.36 0.37 0.39 0.26 6 39 0.41 0.39 0.41 0.29 8 36 0.39 0.40 0.42 0.26 8 39 0.44 0.43 0.45 0.29 10 35 0.43 0.46 0.47 0.26 10 39 0.49 0.48 0.50 0.29 12 35 0.48 0.51 0.53 026 12 38 0.55 0.54 0.56 0.29 14 35 0.53 0.57 0.59 0.26 14 38 0.61 0.60 0.62 029 11 ft by 8 ft by 11 i n.c 12 It by 8 it by 12 ln.c 2 46 0.41 0.56 0.49 0.26 2 49 0.45 0.58 0.49 0.29 3 41 0.33 0.42 0.41 0.26 3 44 0.36 0.44 0.42 0.29 4 39 0.31 0.39 0.40 0.26 4 41 0.34 0.41 0.41 0.29 5 37 0.32 0.40 0.42 0.26 5 40 0.36 0.42 0.45 0.29 6 37 0.33 0.41 0.44 0.26 6 39 0.37 0.43 0.46 0.29 8 36 0.35 0.45 0.47 0.26 8 39 0.39 0.47 0.50 0.29 10 36 0.38 0.50 0.53 3.26 10 38 0.44 0.53 0.56 "029 12 35 0.42 0.56 0.59 0.26 12 38 0.48 0.60 0.63 0.29 14 35 0.46 0.62 0.65 0.26 14 38 0.66 0.69 0.69 0.29 llftby10It by 111n.c 1 2ftby10 i tby 121n.c 2 56 0.37 0.62 0.55 0.26 2 55 0.41 0.63 0.55 0.29 3 48 0.30 0.46 0.46 0.26 3 48 0.33 0.48 0.47 0.29 4 44 0.29 0.42 0.45 0.26 4 44 0.32 0.44 0.46 0.29 5 42 0.30 0.43 0.47 0.26 5 43 0.34 0.46 0.49 0.29 6 40 0.30 0.44 0.48 0.26 6 42 0.34 0.47 0.51 0.29 8 39 0.32 0.47 0.52 0.26 8 40 0.36 0.51 0.55 0.29 10 38 0.35 0.53 0.57 0.26 10 40 0.40 0.57 0.61 0.29 12 37 0.38 0.59 0.63 0.26 12 39 0.44 0.63 0.68 029 14 37 0.42 0.65 0.70 0.26 14 39 0.48 0.70 0.75 0.2 9 0 11 ft by 11 ft by 11 In.c 12 It by 12 it by 12 In.c 2 82 0.36 0.64 0.58 0.26 2 89 0.38 0.68 0.80 0.29 3 55 029 0.48 0.48 0.26 3 60 0.31 0.51 0.51 0.29 4 49 028 0.43 0.47 0.26 4 53 0.30 0.47 0.50 029 5 46 029 0.44 0.49 0.26 5 50 0.32 0.48 0.54 0.29 6 44 029 0.45 0.50 0.26 6 48 0.32 0.50 0.55 0.29 8 41 0.31 0.49 0.53 0.26 8 45 0.34 0.53 0.59 0.29 10 40 0.34 0.54 0.59 0.26 10 44 0.37 0.59 0.65 0.29 12 39 0.37 0.60 0.65 0.26 12 43 0.41 0.66 0.72 029 14 39 0.41 0.66 0.71 0.26 14 42 0.45 0.72 0.79 0.29 A The design earth cover Indicated b the height of fill above the top of the box section. Design requirements are based on the material and 5W properties, loading data and typical section as Included In Appendix X1. For alternative or special designs see 7.2. a Design steal area In square inches per linear foot of box section at those locations which are ku kated on the typical section Inducted In Appendix X1. c The box section designation. for example, 3 It by 2 ft by 4 in.. Indicates (Interior Horizontal Span, In feet) by (Interior Vertical Rise, in feet) by (Wall and Slab ThIclasm. In inches). 0 Minimum practical 31601 area 13 spedfled. 40 C 789 TABLE 3 Design Requirements for Precast Concrete Box Sectlons4nder Earth Dead Load CondidonsA NOTE 1- )esign earth covers and relMarcement areas am be an the weight of a colurm of earth over the width of the box section as dented in Appardx X1. See Appendix X2 for modi8catlons to relnfacenient areas for other earth load conditions. Nore 2- Concrete Design Strength 5000 psi. Design Earth M. min, In. Clranferentlal Reinforcement Areas' Design Earth M, min, in. CkaxnferentW Reinforcement Areas° -- Cover, tt 0.10 A., A A AM Cover, ft 0.12 Apt A A, A., 0.10 0.13 0.13 3 it by 2 It by 4 ln.o 16 14• 0.10 0.15 • 0.15 6 It by 5 it by 6 ln.c 18 14 0 to 10 14 0.10 0.10 0.10 0.10 0 to 8 22 0.14 0.14 0.14 0.14 12 14 0.10 0.10 0.11 0.10 10 21 0.14 0.16 0.17 0.14 14 14 0.10 0.12 0.12 0.10 12 20 0.14 0.19 0.20 0.14 16 14 0.10 0.14 0.14 0.10 14 20 0.14 0.22 0.23 0.14 18 14 0.11 0.16 0.16 0.10 16 20 0.14 0.25 026 0.14 20 14 0.13 0.17 0.18 0.10 18 20 0.15 0.28 0.30 0.14 22 14 0.14 0.19 0.19 0.10 20 20 0.17 0.32 0.33 0.14 3nby3ftby4in.c 0 to 10 15 0.10 0.10 0.10 0.10 12 14 0.10 0.11 0.12 0.10 14 14 0.10 0.13 0.13 0.10 16 14• 0.10 0.15 • 0.15 0.10 18 14 0.10 0.17 0.17 0.10 20 14 0.10 0.19 0.19 0.10 4Itby2itby5lnc 0 to 10 18 0.12 0.12 0.12 0.12 12 17 0.12 0.13 0.13 0.12 14 17 0.14 0.15 0.15 0.12 16 17 0.16 0.17 0.17 0.12 18 17 0.18 0.19 0.19 0.12 20 17 021 021 021 0.12 20 22 4 it by 31t by 5 ln.c 0.36 0.17 0 to 8 17 0.12 0.12 0.12 0.12 10 17 0.12 0.12 0.13 0.12 12 17 0.12 0.14 0.15 0.12 14 17 0.12 0.17 0.17 0.12 16 17 0.12 0.19 020 0.12 18 17 0.14 0.22 0.22 0.12 20 17 0.16 0.24 025 0.12 20 21 4ftby4itby5ln.c 0.39 0.17 0 to 8 18 0.12 0.12 0.12 0.12 10 17 0.12 0.13 0.13 0.12 12 17 0.12 0.15 0.16 0.12 14 17 0.12 0.18 0.18 0.12 16 17 0.12 0.20 021 0.12 18 17 0.12 0.23 023 0.12 20 17 0.13 0.25 026 0.12 18 23 5 it by3Itby6in. 0.36 0.17 0 to 8 20 0.14 0.14 0.14 0.14 10 19 0.14 0.14 0.15 0.14 12 19 0.14 0.17 0.18 0.14 14 19 0.16 0.20 0.20 0.14 16 19 0.18 0.23 0.23 0.14 18 19 0.21 0.25 0.26 0.14 20 19 0.23 028 0.29 0.14 20 25 5ftby by6 in.c 0.40 0.19 0108 20 0.14 0.14 0.14 0.14 10 19 0.14 0.16 0.16 0.14 12 19 0.14 0.17 0.19 0.14 14 19 0.14 0.22 0.22 0.14 16 19 0.15 0.25 0.25 0.14 18 19 0.17 0.28 0.28 0.14 20 19 0.19 0.31 0.31 0.14 6ftb 0 to 10 23 0.17 0.17 0.17 0.17 12 23 0.18 0.19 020 0.17 14 23 0.21 0.23 ' 023 0.17 16 23 024 026 026 0.17 18 23 0.28 029 0.29 0.17 20 23 0.31 0.32 0.33 0.17 6ftby4itby71n.c 0 to 8 23 0.17 0.17 0.17 0.17 10 22 0.17 0.18 0.19 0.17 12 22 0.17 021 022 0.17 14 22 0.18 0.25 026 0.17 16 22 021 028 029 0.17 18 22 023 0.32 0.33 0.17 20 22 026 0.35 0.36 0.17 6 it by 5 it by 7 In.c 0 to 8 23 0.17 0.17 0.17 0.17 10 21 0.17 0.19 020 0.17 12 21 0.17 023 024 0.17 14 21 0.17 026 027 0.17 16 21 0.18 0.30 0.31 0.17 18 21 0.20 0.34 0.35 0.17 20 21 023 0.37 0.39 0.17 6ttby0ftby7In. 0 to 6 26 0.17 0.17 0.17 0.17 8 24 0.17 0.17 0.18 0.17 10 24 0.17 020 0.21 0.17 12 24 0.17 0.23 025 0.17 14 23 0.17 027 0.29 0.17 16 23 0.17 0.31 0.32 0.17 18 23 0.18 0.34 0.36 0.17 7 it by 4 it by 8 In.c 0 to 8 26 0.19 0.19 0.19 0.19 10 25 0.19 0.20 021 0.19 12 25 0.20 0.24 025 0.19 14 25 023 0.28 0.29 0.19 16 25 027 0.32 0.33 0.19 18 25 0.30 0.36 0.36 0.19 20 25 0.34 0.40 0.40 0.19 7 it by 5 it by 8 in.c 0 to 6 26 0.19 0.19 0.19 0.19 10 25 0.19 0.22 0.23 0.19 12 25 0.19 0.26 027 0.19 14 25 0.21 0.30 0.31 0.19 16 25 0.23 0.34 0.35 0.19 18 25 0.26 0.38 0.39 0.190 qUO C 789 TABLE 3 Continued Design Earth Cover. h A M, min, In. Quenterentiai Reinforce A A., A, A Ai4 Design Earth Cover, n A M, min. In. Cirunferentlal Renforcerent Areas° A., A, A A i4 28 0.19 0.19 7 ft by 6 it by 8 ln.c 0.19 6 27 0.19 0.19° 9 ft by 6 tt by 9 in.c 0.19 8 0 to 6 27 0.19 0.19 0.19° 0.19 0 to 6 31 0.22 0.22 0.22 0.22 8 26 0.19 0.19 0.20 0.19 8 29 0.22 0.26 0.28 0.22 10 25 0.19 0.23 0.24 0.19 10 29 0.24 0.32 0.33 0.22 12 25 0.19 027 0.29 0.19 12 29 0.28 0.38 0.39 0.22 14 25 0.19 0.31 0.33 0.19 14 29 0.33 0.43 0.45 0.22 16 25 021 0.35 0.37 0.190 14 8itby8ftby81n.c 0.36 0.41 0.42 18 25 0.24 0.40 0.41 0.19° 33 024 0.24 9 ft by 7 ft by 9 in. c 0.24 8 32 0.24 0.30 7 It by 7 ft by 8 in. 0.24 10 0 to 5 32 0.22 0.22 0.22 0.22 32 0.31 0.42 0.45 024 14 6 30 0.22 0.22 0.24 0.22 0 to 6 30 0.19 0.19 0.19 0.190 8 30 0.22 0.27 0.29 022 8 27 0.19 0.19 0.21 0.199) 10 30 0.23 0.33 0.35 0.22 10 27 0.19° 024 0.25 0.190 12 29 027 0.39 0.41 0.22 12 27 0.19 028 0.30 0.190 14 29 0.31 0.45 0.48 0.22 14 26 0.19 0.32 0.34 0.19 16 26 020 0.36 0.38 0.19 9 1t by 6 it by 9 In. 18 26 022 . 0.41 0.43 0.19° 0 to 5 34 022 0.22 022 0.22° 8 it by 4 It by 8 in.c 6 32 0.22 022 025 0.22 0 to 6 28 0.19 0.19 0.19 0.190 8 31 0.22 0.28 0.31 022 8 27 020 021 0.22 0.190 10 31 0 22° 0.34 0.37 0.22° 10 27 024 0.26 0.27 0.190 12 30 025 0.40 0.43 022° 12 27 029 0.30 .0.31. 0.19 14 30 029 0.47 0.50 022° 14 27 0.34 0.35 0.36 0.19 9 it by 9 it by 9 in.c 8 it by 5 it by 8 in.c 0 to 4 38 022 0.22 0.22 0.22 0 to 6 28 0.19 0.19 0.19 0.190 5 35 0.22 022 0.23 022° 8 27 0.19 0.23 0.24 0.190 6 34 0.22 0.23 0.26 0.22 10 26 0.22 028 0.29 0.190 8 33 0.22 0.29 0.32 0.22 12 26 0.26 0.33 0.34 0.190 10 33 0.22 0.35 0.39 0.22 14 26 0.30 0.38 0.39 0.19 12 32 0.24 0.41 0.45 0.22 14 32 027 048 051 022° 0 to 4 34 a ft by6ftby8h.c 0.19 0.19 0 to 5 28 0.19 0.19 0.19 0.19 6 27 0.19 0.19° 0.20 0.19 8 27 0.19 0.24 0.26 0.19 10 27 020 0.29 0.31 0.19 12 27 0.24 0.35 0.36 0.19 14 27 028 0.40 0.42 0.19 0.19 14 8 it by 7 ft by 8 in.c 0.24 0. 0 to 5 30 0.19 0.19 0.19 0.19 6 28 0.19 0.20 0.22 0.19 8 27 0.19 0.25 0.27 0.19 10 27 0.19 0.30 0.33 0.19 12 27 0.22 0.36 0.38 0.19 14 27 0.26 0.42 0.44 0.19 0.22 14 8itby8ftby81n.c 0.36 0.41 0 to 4 34 0.19 0.19 0.19 0.19 5 31 0.19 0.19 020 0.19 6 30 0.19 0.20 0.23 0.19 8 30 0.19 026 0.28 0.19 10 29 0.19 0.31 0.34 0.19 12 29 0.21 0.37 0.40 0.19 14 29 0.24 0. 0.45 0.19° 10it by6It by101n.° 9ttby5itby9in 0 to 6 34 0 to 6 31 0.22 0.22 0.22 0.22 8 30 0.22 0.24 0.26 0.22 10 29 0.26 0.30 0.31 0.22 12 29 0.31 0.35 0.37 0.22 14 29 0.36 0.41 0.42 0.22° 10 it by8ttby10in.c 0 to 5 10 ft by 5 ft by 10 ln.c 0.24 0.24 0 to 6 34 0.24 0.24 0.24 0.24 8 33 0.25 0.26 0.27 0.24 10 33 0.31 0.32 0.33 0.24 12 33 0.36 0.38 0.39 0.24° 14 32 0.42 0.44 0.45 0.24 16 32 0.48 0.44 0.51 0.24 0.54 0.240 10it by6It by101n.° 0 to 6 34 0.24 0.24 0.24 0.24 8 32 024 0.28 0.30 0.24 10 32 028 0.34 0.36 0.24 12 32 0.33 0.40 0.42 0.24 14 32 0.39 0.46 0.48 0.24 10 It by 7 it by 10 in.c 0 to 5 34 0.24 0.24 0.24 024° 6 33 024 0.24 0.25 0.24 8 32 0.24 0.30 0.32 0.24 10 32 026 0.36 0.38 0.24 12 32 0.31 0.42 0.45 024 14 32 0.36 0.49 0.51 024 10 it by8ttby10in.c 0 to 5 36 0.24 0.24 0.24 0.24 6 34 0.24 0.24 0.27 0.24 8 33 024 0.31 0.33 0.24 10 33 0.25 0.37 0.40 0.24 12 32 0.29 0.44 0.47 0.24 14 32 0.34 0.51 0.54 0.240 4D C 789 TABLE 3 Co Design Earth M. min. In. Ck=forentlel Rohfort wwt Areasa Design Earth M, min, In. Ckcumforentlal Reinforcement Arsesa ./ Cover. ftA A., A iz A A., Cover, ftA A., A., A, A w 10ftby9ftby101n. 11it by10ftby11h. 0 to 4 38 0.24 0.24 0.24 0.24 0 to 2 42 0.26 0.26 0.26 026 5 36 024 024 025 024 3 41 0.26 026 026 026 8 35 024 0.25 0.29 0.24 4 40 026 026 026 0.26 8 34 024 0.32 0.35 0.24 5 39 026 0.26 0.27 0.26 10 34 024 0.38 0.42 0.24 6 39 026 027 0.30 026 12 33 028 0.45 0.49 0.24 8 38 0.26 0.33 0.37 026 14 33 0.32 0.52 0.56 0.24 10 37 026 0.40 0.44 026° 12 37 0.30 0.47 0.52 026 10 It by 10 ft by 10 in.c 14 36 0.35 0.55 0.59 026 16 36 0.39 0.62 0.66 026 0 to 4 43 024 024 024 024 11 ft by 11 It by 11 h.c 5 38 024 024 _ 027 0240 0 to 2 47 - -- - 026° 026 026 026 6 37 024 9) 0.26 030 0.240 3 44 026 _ 026 026 026 8 36 024 0.33 0.37 0240 4 43 026 026 026 026 10 36 024 0.39 0.44 0:240 5 42 026 0.26 028 028 12 35 027 0.46 0.50 024 6 41 026 0.27 0.32 0.26 14 35 0.31 0.53 0.57 024 8 40 026 0.34 0.39 026 10 39 026 0.41 0.46 026 11 It by 4 ft by 11 h.c 12 39 029 0.48 0.53 0.26 14 38 0.34 0.55 0.60 026 0 to 2 38 026 026° 026 026 16 38 0.38 0.62 0.68 026 3 38 0.26 0260 0 260 h 0.260 12 by 4 ft by 12 h.c 4 38 028 026 0.26 028 5 38 026 026 026 026 0 to 2 42 029 029 029 029 6 37 026 026 026 026 3 42 0.29 029 0.29 029 8 37 0.31 026 0.26 026 4 41 029 0.29 029 029 10 37 0.37 0.31 0.32 026 5 41 0.29 0.29 0.29 0.29 12 37 0.45 0.36 0.37 0.26 6 41 029 029 029 0.29 14 37 0.52 0.42 0.43 026 8 41 0.35 0.29 0.29 029 16 37 0.60 0.47 0.48 026 10 41 0.43 0.32 0.33 0.29 18 37 0.68 0.53 0.54 026 12 41 0.51 0.38 0.39 0.29 14 41 0.59 0.44 0.45 029 11 ft by 6 ft by 11 In.c 16 41 0.68 0.50 0.51 029 18 41 0.77 0.56 0.57 0.29 0 to 2 36 026 028 026 0.26 12 It by 6 ft by 12 h.c 3 36 026 0.28 026 0.28° 0 to 2 40 029 029 029 029 4 36 026 026 0.26 0.260 3 39 029 0.29 029 0.29 5 36 026 026 0.26 0.260 4 39 029 029 029 0.29 6 35 026 026 0.26 0260 5 39 029 029 029 029 8 35 027 0.29 0.31 0.260 6 39 0.29 029 0.29 029 10 35 0.32 0.36 0.3) 0.26 6 38 0.30 0.31 0.33 029 12 35 0.38 0.42 0.44 0260 10 38 0.37 0.38 0.39 029 14 35 0.44 0.48 0.50 0280 12 38 0.43 0.44 0.46 029 16 35 0.50 0.55 0.57 0260 14 38 0.50 0.51 0.53 029 18 35 0.56 0.62 0.64 0.260 16 38 0.57 0.58 0.60 0.29 18 38 0.64 0.65 0.67 0.29 11It by8ttby11 h.c 12ft byeftbyl2h. c 0 to 2 38 026 026 0.26 026 0 to 2 40 029 029 0.29 029 3 37 026 026 026 026 3 39 029 0.29 029 029 4 38 026 026 026 026 4 39 029 029 029 029 5 36 0.26 026 028 0.26 5 39 029 029 0.29 029 6 36 026 026 028 028 6 38 0.29 029 0.30 029 8 35 026 0.32 0.34 026 8 38 029 0.34 0.37 029 10 35 028 0.39 0.41 028 10 38 0.32 0.41 0.44 0.29 12 35 0.33 0.46 0.48 0.26° 12 37 0.38 0.49 0.52 029 14 35 0.38 0.53 0.55 026 14 37 0.43 0.56 0.59 029 18 35 0.43 0.60 0.85 0.26 16 37 0.49 0.64 0.87 0290 OffO C 789 TA 3 Continued Design Earth M, mkt, In. Circumferential Reinforcement Areas' Design Earth M, min, In. Cin mferentlal Rainforcernent A Cover, ftA A., A. A, A,4 Cover, ftA A., A.2 A, A. 12ttby10nby12ln.c 12nby12ttby12kt.c 0 to 2 43 0.29 0.29 0.29 0.29 0 to 2 52 0.29 0.29 0.29 0.29 3 42 0.29 0.29 0.29 0.29 3 49 0.29 0.29 0.29 0.29 4 41 029 0.29 0.29 0.29 4 46 0.29 0.29 0.29 0.29 5 41 0.29 0.29 0.29 0.29 5 45 0.29 0.29 0.32 029 6 40 0.29 0.29 0.33 0.29 6 45 0.29 0.30 0.35 0.29 8 39 0.29 0.36 0.40 0.29 8 43 0.29 0.38 0.43 0.29 10 39 0.30 0.44 0.48 0.29 10 43 0.29 0.45 0.50 0.29 12 39 0.34 0.51 0.55 0.29 12 42 0.33 0.53 0.58 0.29 14 38 0.39 0.59 0.63 0.29 14 41 0.37 0.60 0.66 0.29 16 38 0. 0.6 0.71 0.29 16 41 0.42 0.68 0. 75 0.29 A The design earth cover indicated is the freight of fill above the top of tine box section. Design requirements are be On the material and soil properties. loading data and typical section as included In Appendix X1. For alternative or spacial designs see 7.2. a Design steel area in square inches per linear foot of box section at those locations which are Indicated on the typical section include! in Appendix X1 - 0 The box section designation, for example. 3 ft by 2 ft by 4 n.. indicates (interior Horizontal Span in feet) by (Interior vertical Rise in feet) by (Wad and Slab Thickness in inches). 0 Mnkntxn practical steel area is specified. APPENDIXES (Nonmandatory Information) XI. DESIGN CRITERIA USED TO DEVELOP TABLES 1, 2,, AND 3 X1.1 Bedding and Backfill Assumptions X 1.1.1 The bedding is assumed to provide a slightly yielding, uniformly distributed support over the bottom width of the box section. X1.1.2 The design earth covers and reinforcement areas are based on the weight of a column of earth over the width of the box section. X1.1.3 Refer to Appendix X2 for other bedding and backfill conditions. X1.2 Criteria for Loads X 1.2.1 Design loads are based on the American Associa- tion of State Highway and Transportation Officials ( AASHTO) "Standard Specifications for Highway Bridges," Twelfth edition, 1973. X1.2.2 Live loads for designs given in Table l are H2O truck wheel loads as defined in the AASHTO specifications. Live loads for designs given in Table 2 are either the H2O truck wheel loads, or interstate truck wheel loads as defined in U.S. Dept. of Commerce, Bureau of Public Roads Circular Memorandum 2240, 22 April 1957, depending upon whichever produces the more severe design strength requirements (see Fig. X I A ). Distribution of truck wheel loads through earth fills is in accordance with Section 1.3.3 in the AASHTO specifications. Earth cover loads for designs given in Tables 1, 2, and 3 are the weight of a column of earth of a width equal to the outside width dimension of the box section and a height equal to the depth of earth cover over the top of the section. This earth load is recommended in Section 1.2.2 (A) of the AASHTO Bridge Specifications for the normal case of box culverts on "yielding" subgrade. The AASHTO specifications define an "unyielding" subgrade as "rock or piles" and require the use of the Iowa formulas for this case. See Appendix X2 for a method to modify the designs given in Tables 1, 2, and 3 when the anticipated earth load, or earth load plus uniformly distrib uted surface surcharge load, is greater (or less) than th,,_,/ weight of the column of earth directly above the out -to -out width of the box sections. X 1.2.3 Section 1.2.2 of the AASHTO specification allows the design of buried structures, such as box section culverts, for 70 % of the weight of earth directly above the out- to-out width of structure. On the other hand, the Manton - Spangler theory of earth loads on buried pipe gives a total earth load greater than the weight of the column of earth directly over the structure for most "positive projecting" culverts, and less than the weight of the column of earth over the structure for "trench type" installations, "negative projecting" culverts, and "induced trench" culverts. In view of the number of different installation conditions which may be encountered and the use of higher reinforcing steel stresses associated with the ultimate strength design method (see X1.2), the 30 % reduction in weight of supported earth load permitted in Section 1.2.2 of the AASHTO specification is not utilized for the tabulated designs, and a method of modifying designs for anticipated earth loads which differ from the above described "standard earth load" is given in Appendix X2. X1.2.4 Lateral earth pressure from weight of earth above and adjacent to a box section is taken as a minimum of 0.25 times vertical pressure, and an additional 0.25 times vertical pressure is added when determining steel areas only when areas are increased by such increased lateral pressure. For Tables 1 and 2, additional lateral pressure in lbf /ft fror approaching truck wheel loads is taken as 700 divided by depth of earth cover in feet and is added when determining steel areas only at sections where area is increased by increased lateral pressure. 90 c 789 TABLE X2.1 Design Information for Revising Tabulatecl R einforcing Steel Areas cuNerc size Cftmp In Reinforcing Steel Area per 1000 Ibt/ft Change In Total Weight on Box Section � m Maximum W. lof/ftA culvert size Change In Reinforckp Steel Area per 1000 Ibflft change In Total Weight on Box Section . m AA.,, In . m bl W. 3 ft by 2 it by 4 in. 0.018 0.023 9 500 9 it by 5 it by 9 in. 0.022 0.025 20 300 3 ft by 3 it by 4 In. 0.013 0.028 9 400 9 it by 6 it by 9 in. 0.020 0.027 20100 4 it by 2 it by 5 in. 0.021 0.020 12 200 9 it by 7 ft by 9 In. 0.018 0.029 19 800 4 ft by 3 it by 5 in. 0.016 0.025 12100 9 it by 8 ft by 9 in. 0.016 0.030 19 600 4 ft by 4 It by 5 in. 0.013 0.028 12 000 9 it by 9 ft by 9 in. 0.015 0.031 19 400 5 ft by 3 ft by 6 In. 0.019 0.022 14 800 10 it by 5 ft by 10 In. 0.022 0.023 22 800 5 It by 4 It by 6 In. 0.015 0.025 14 700 10 It by 6 it by 10 In. 0.020 0.025 22 500 5 ft by 5 ft by 6 In. 0.012 0.028 14 500 10 it by 7 ft by 10 In. 0.019 0.027 22 300 6 ft by 3 it by 7 In. 0.020 0.020 17 500 10 ft by 8 it by 10 in. 0.017 0.028 22100 6 ft by 4 It by 7 in. 0.017 0.023 17 300 10 it by 9 ft by 10 in. 0.015 0.030 21 800 6 ft by 5 it by 7 In. 0.015 0.026 17100 10 it by 10 it by 10 in. 0.014 - 0.031 21 600 6 It by 6 It by 7 in. 0.013 0.028 16 900 11 ft by 4 it by 11 in. 0.024 0.020 25 300 7 it by 4 ft by 8 In. 0.019 0.022 19 800 11 ft by 6 It by 11 in. 0.021 0.023 24 900 7 it by 5 It by 8 in. 0.016 0.024 19 600 11 ft by 8 it by J1 in. 0.018 0.026 24 500 7 It by 6 it by 8 In. 0.014 0.026 19 400 11 it by 10 ft by 11 in. 0.015 0.029 24 000 7 ft by 7 it by 8 in. 0.013 0.028 19 300 11 it by 11 it by 11 In. 0.013 0.030 23 800 8 ft by 4 it by 8 in. 0.024 0.024 18 000 12 it by 4 ft by 12 in. 0.025 0.018 27 800 8 it by 5 it by 8 in. 0.021 0.027 17 SW 12 It by 6 it by 12 in. 0.022 0.021 27 400 8 ft by 6 it by 8 in. 0.018 0.029 17 600 12 it by 8 it by 12 in. 0.019 0.024 27 000 8 ft by 7 It by 8 in. 0.016 0.030 17 400 12 it by 10 ft by 12 in. 0.016 0.027 26 500 8 It by 8 it by 8 In. 0.015 0.032 17 200 12 It by 12 ft by 12 in. 0.013 0.030 26 200 " Maximurn allowable total weight on box section as governed by shear strength of box section without stirrups. X2.3.2 Find -The required A,,, A and A circumfer- ential reinforcement areas. In all uses A, is governed by the minimum steel areas as described in X1.4.2 and is not changed by increased vertical loads. X2.3.3 Solution: X2.3.3.1 Effective unit weight of soil = 110 x 1.36 = 150 lbf /ft X2.3.3.2 Determine change in total weight of earth on culvert in kips force /linear ft (1000 lbf /ft): W -HxBxw where: W = total weight of earth on culvert, kf /ft, H = height of earth cover, ft, B = outside span, ft, W = unit weight of earth, kf /ft W 120 = 14 x 7.167 x 0.120 = 12.040 kf /ft, W, so = 14 x 7.167 x 0.150 - 15.051 kf /ft, and W = WI30 - W120 = 3.011 kf /ft. X2.3.3.3 Determine the change in circumferential rein- forcement areas. From Table 1, for a 6 ft by 6 ft by 7 in. section under 14 ft of covers A,, = 0. 17, A = 0.32, and A = 0.33 in. /11. From Table X2.1, for a 6 ft by 6 ft by 7 in. section, the changes in reinforcing areas are, for A,,, 0.013, and for A, and A 0.02 B. in. /ft for each 1000 lbf /ft of load change. Therefore: AA,, =3.011 x0.013=0.039 AA = 3.011 x 0.028 = 0.084 AA, - 3.011 x 0.028 = 0.084 Therefore, the correct reinforcement areas are as follows: A,, - 0.17 + 0.04 - 0.21 in.z /ft A - 0.32 + 0.08 - 0.40 in. /ft A, - 0.33 + 0.08 - 0.41 in. /ft X2.3.3.4 Determine if the total weight of earth on the culvert is less than maximum as governed by the shear strength of culvert without stirrups. X2.3.3.5 From Table X2.1, the maximum allowable weight = 16 900 lbf /ft. From X2.3.3.2, W, = 15 051 lbf /ft. The approximate equivalent uniform load from an HS20 live load at 14-ft burial depth is about 160 ibf /ft or a total load of 1150 lbf /ft (160 x 7.167). Therefore, the total weight on the box section is 16 200 Ibf /ft (15 050 + 1 150) which is less than the maximum allowable; therefore the design is satisfactory. The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned In this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of Infringement of such rights, are entirely their own responsibility. This standard b sub /act to revision at any time by the responsible technical committee and must be reviewed every live years and it not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careAd consideration at a meeting of the responsible technical committee, which you may attend. p you tee/ that your comments have not received a leU hearing you shoud make your views known to the AS TM Committee on Standards, 1916 Race St., Philadelphia, PA 19 103. 110 C 789 TABLE X1.1 Specific Criteria Used for Tables 1, 2, and 3 Material Propertles: Welded wire fabric, minknurn specified yield 65 000 psi stress Canaste, r>INrnurn specified compressive 5 000 psi strength S000. ta Ratio teral to vertical pressure from weight 0.25 min to 0.50 max of earth AdditI0rW lateral pressure from approaching 700 + H. Ibf/ft where H truck wheels earth cover, it External water table below box section invert Effective weight coefficient 1.0 Capacity Reduction Factors (from ACf 318 -71) Shear 0.85 Axial compression combined with bending" 0.70 to 0.90 Loading Data Load factor —dead load 1.5 Load factor —Yve load 2.2 Truk axle load: H2O (Table 1) 32 000 Ibf Interstate (Table 2) 2 @ 24 000 Ibf each Nor* (Table 3) Impact (variable with depth) see AASHTO Bridge 0 to 20 x Specifications, 1977 Worm intemal pressure 0.0 Depth of water In box section equal to inside height E ternal ground water pressrxO 0.0 Arr angement.- Concrete cover over steel 1.0 in. Slab thickness +/u times inside span plus 1.0 In. up to 7 - n span — Inside span above span Side wag thk kness � l Haunch dimensions vertkall and horizontal dl- mansions both equal to slab thickness Mkwnum reinforcing Inside face slabs and side 0.002 bt wags, outside face site walls and corners of slabs The structural arrangement and details are shown In Fig. 1. "See ACI 318 -71, Section 9.2.1.2(c). minimum practical steel area. For such designs, the steel areas calculaied for support of design loads are less than th minimum steel area which is specified for slabs in AASHT011) Specification, 0.002 bt, and thus, the minimum reinforce- ment areas are shown in the tables. X 1.4.3 For specific criteria used in Tables 1, 2, and 3, refer to Table X 1.1. X 1.4.4 The maximum height of earth cover shown in the tables is determined by the shear strength of the box section without the use of special shear reinforcement, as given in Sections 11.2.1, 11.2.2, and 11.4.1 ofACI 318 -71, and by the "standard weight" of the column of earth directly above the box section. See Table X2.1 for the maximum loads which can be carried on the standard box sections. These loads can be used to determine maximum earth cover heights when the anticipated weight of earth supported by the section is greater than (or less than) the above "standard weight" of earth cover. XIS Multiple Cell Installations X1.5.1 The designs given herein are for single cell precast reinforced concrete box sections. The units may be used in parallel for multicell installations if means of positive lateral bearing by continuous contact between the sides of adjacent boxes are provided. Compacted earth fill, granular backfill, or grouting between the units are considered means of providing such positive bearing. X2. MODIFICATION OF "STANDARD" BOX SECTION DESIGNS FOR EARTH LOADS DIFFERENT FROM THE "STANDARD" EARTH LOAD X2.1 The heights of cover given in Tables 1, 2, and 3 are based on a "standard weight of earth fill" equal to the weight of a column of earth with a unit weight of 120 lbf /ft' and a width equal to the out - to-out width of the box section. For some installations, the design engineer may determine that for a given height of cover, the weight of earth to be supported by the box section is more or less than the above "standard weight of earth fill" used to develop the designs given in the tables. X2.1.1 For example, the Marston - Spangler theory for loads on buried structures indicates that the weight of earth that must be supported by most "positive projecting" con- duits is greater than the weight of a column of earth directly over the conduit, while the weight of earth that must be supported by "trench -type" conduits, "negative- projecting" conduits, and "induced - trench" conduits is less than the weight of earth over the conduits. Also, the designer may wish to a unit weight of earth more or less than the 120 lbf /ft' used in the "standard weight," or may wish to include a particular uniformly distributed surface surcharge loading. X2.2 Incremental reinforcing steel areas are given in Table X2 for each box section type. Where installation conditions warrant the use of a weight of earth more or less than the "standard weight," the designer may utilize these incremental areas to modify the steel areas given in Tables 1, 2, or 3 for a particular height of cover. The maximum total weight of earth fill that may be supported over the out - to-out width of each standard box section size, as governed by shear strength without shear reinforcing, is also given in Table X2.1. Thus, for any weight of earth or surface surcharge, or both, a designer can use Tables 1, 2, 3 and X2.1 to determine the required area of reinforcing steel for various heights of earth cover, or the maximum height of earth cover without special shear reinforcing, for any of the standard box section sizes shown in these tables. X2.3 The following design example illustrates how the above tables may be used to obtain a suitable design for a box section to support an earth load that is greater than the "standard weight of earth" used to develop Tables 1, 2, and 3. Example. X2.3.1 Given —A 6 ft by 6 ft by 7 in. Table 1 precast con- crete box section under 14 ft of cover with 110 Ibf /ft' earth and an effective weight of earth supported by the section of 1.36 times the weight of the column of earth directly over the section instead of the standard 120 lbf /ft earth. IV, 4D C 789 WHEEL SPACING HS -20 Truck and 6 Interstate Alternate Load AXLE LOADS HS -20 Load 1,000 111 )2.00011 32.000 IM 14 �4 mi - 30 1 m axi AXLE LOADS 0 1 1 24, 000 lbf 24,000 lbf Interstate Alternate Load I 41---� FIG. X1.1 Axle Loads for Box Section Standard Designs X13 Methods of Analysis X1.3.1 The structural effects of the loads described in X 1.2 are evaluated based on the elastic method of structural analysis. Design moments, shears, and thrusts are deter- mined by computer analysis using the stiffness matrix method, and design is based on maximum stress resultants at critical sections caused by the most severe combination of design loads. X1.4 Method of Design X1.4.1 Design heights of earth cover, wall thicknesses, and reinforcing steel areas are determined based on the elastic method of structural analysis and the ultimate strength method of reinforced concrete design given in the 1971 ACI Building Code (ACI 318 -71). Steel areas are governed by ultimate flexural strength. The steel areas and the size and spacing of circumferential wires are propor- tioned to limit the maximum crack width to 0.01 in. under design load conditions. Evaluation of crack control with the welded wire fabric reinforcement specified for the tabulated designs is based on the results of research by Lloyd, Rejali, and Keslera at the University of Illinois, and is significantly more conservative than the crack control provisions given in ACI 318 -71. This is because it is recognized that approxima- tions which were used to simplify the ACI crack control provisions can result in unconservative designs for thin elements such as slabs. Standard designs do not cover installations that must resist significant external water pres- sure. Furthermore, installations that are subject to high external water pressure may require vertical reinforcement for the inside face of the side walls. Lloyd, Rejali, and Kesler suggest that crack control equations developed for deformed bar reinforcement may also be used for both welded smooth wire fabric and deformed wire fabric reinforcement. X 1.4.2 Note that some box section designs shown in the tables have steel area requirements designated by "D" as Lloyd, J. P., Rcjali. H. M.. and Kesler, C. E. "Crack Control in One -Way Slabs Reinforced with Deformed Welded Wire Fabric,' Journal of the American Concrete Institute Proceedings, PACIA, Vol 66, No. 3, May 1969. n,