TCEQ-SY110501f
� I
For Public Comment
May 2011
Two Total Maximum Daily Loads
for Indicator Bacteria in Cottonwood
Branch and Grapevine Creek
Segments o822A & o822B
Assessment Units: 0822A 02 and o822B Oi
Prepared by the
Office of Water, Water Quality Planning Division
TEXAS COMMISSION ON ENVIRONMENTAL QUALITY
l LOZ AeW 'luewwoO oilgnd BOA n A4!lenC leluewuaLnu3 uo uoissiwwoO sexal
gapasag pluauzuoainug patlddd .zoj aln }ilsui sexas, aqj Sq paaedaad
�,xaaa� auuaduao puu gaueag poonAu0110D ut
upapug ao3 spUoq Kj ?UQ WnLuumw tujos oml l03 juawnao(l :poddnS uoi1moUV„
puu
«xaaa� auznaduaf) — gzzso luaw2aS 29 gauuag poomuoPOD —Vzzso }uaw2aS
:S-,Qya eua }aug .zo3 juawnoo(l :poddnS ILIDtugaay„
palitl spodaz aql uo .red ui paseq si:podaa zQML slU
'x3ua2V not ajoad IUjuauzuoainug
wojj sjuuB g2noagi .red ui paauuuTj sem podaa stgl3o u011undaad aqj
< /Iugq'L,ua }a ,oq adu,2uo}lo�S— 99 /ip }/ aa��n�/ uoi }e�uauzaiduzi /sn•x}'awis'baz)yA Am>
ju alis qaM bgoZ aqj uo alquIleAu azu spodai iaofoad i(iw .
Lso£ -TTLSL suxaZ `utlsnV
Lso£T xog 'Q'd
£OZ -Dw
Tlenb IC}uauzuoatnua uo uotsstuiuz0 sexaZ
UL,a1, pUo7 XIIV(l wnuzumy� It1os
aq} Xq Pa}n9p}stQ
Contents
ExecutiveSummary .......................................................................................... ..............................1
Introduction.................................................................................................... ............................... 2
Problem Definition ..... ...............................
Ambient Indicator Bacteria Concentrations .......................................... ............................... 3
WatershedOverview ....................................................................................... ............................... 3
EndpointIdentification .................................................................................... ..............................7
SourceAnalysis .............................. ...............................
Permitted Sources ................ ...............................
Domestic and Industrial Wastewater Facilities ............................... ............................... 8
Sanitary Sewer Overflows .......... ...............................
TPDES - Regulated Storm Water ....................................................... ............................... 9
IllicitDischarges ............................................................................... ............................... 10
UnregulatedSources .............................................................................. ............................... 10
Wildlife and Unmanaged Animal Contributions .............................. .............................11
Unregulated Agricultural Activities and Domesticated Animals .... .............................11
Failing On -site Sewage Facilities ....................................................... .............................12
DomesticPets ...................................................................................... .............................12
Linkage Analysis ........................... ...............................
Load and Flow Duration Curve Analyses ................................................ .............................13
LoadDuration Curve Results ................................................................... .............................15
SeasonalVariation ............................................................................................ .............................15
Marginof Safety ................................................... ...............................
PollutantLoad Allocation ................................................................................ .............................18
WasteloadAllocation ................................................................................ .............................19
LoadAllocation ................................................................................................ .............................21
FutureGrowth ........................................................................................ ............................... 22
TMDLCalculations ................................................................................ ............................... 23
Public Participation .................. ...............................
Implementation and Reasonable Assurances ............................................. ............................... 26
KeyElements of an I -Plan ..................................................................... ............................... 26
References............................................................................................... ............................... 27
Appendix A. Equations for Calculating .
TMDL Allocations for Changed
Contact Recreation Standard ........................................................ ............................... 29
VAdb wimnission on tnwronmental Quality iii For Public Comment, May 2011
i i ry Aew ivawwo,) oucim JO-A
Ai A4!jenjD IquawuaLnu3 uo uoiSSiwwoO Sexal
5Z .................................... ............................... (TO ZZ80 fled) ?laalD autAaduao pur
(zo VZZ80 fIV) uaups$ pooMU0140D J0; suoiimoilu ZQyl PUM
'OT algUs
Sz..................................................................... ............................... xaa iD auiAodua-D
puu gouutg POOMUOUOD a0j sreuiuins uoiluaoilu z(JYU
6 algrZ
{,Z (TO $ZZgO fIV) 31aa1Z) auiAadr.zf) pur (ZO VZZ80 fIV)
'6 aan2lA
gourag pOOMuolloo a0j uoilu;ndwoo aaluM uLiOIS palrin2aa -UON
g alquZ
pz ........ ............................(To gzz80 fly') AaaaZ) auuaduif) puu (zo VZZgo fIV)
L ajar
gauua$ poOMUO1400 a0j uot}rinduioo aaluM uuols PaWpl2ald
G aiges
l,z .......................................................................... ..........................xaaa� autAaduif)
•S ajam
pure gaurag pooMuolloD ao3 suoqu}ndmoa glmoif) ainln3
9 alquiL
£Z ........................................................................... .........................?laai� aulAadulf)
•E aaai3
pur gauuig pOOmuOjjOD .iO3 uoilrinalua ZQy�, jo firw inS
•S alquZ
ZT •' •" • ' (60T x) uollDnpojd Xliup uLio 10 iLaa3 pa }rout }Sa
Ilaq, puL, paqsjaLm ua.re Qya aql ui slad jo siaquinu pawtuilsg
'V aiquj,
6 """" ' To gzzgo pur zo �zzgo snV ui sa2.regasip .zaium uuO }s pa}Bin2ag
£ aiqul
9 ........................ .............................TO $ZZgoRV panuduUt `)iaaaD auinadUJD pur
`z Vzzgo fIV pa iiuduzi ,gauujq pooMuolloo ioj f iuwuzns asn pub
o
z aiqus
........................... : ........ :.................................................. .
- TOOZ aaguianoN .zoj r}rp iloa •g 2uuo}tuouz autinoa jo XauuitunS
i algrz
selgel
uOlpunj r sr To gazgo fIV `�laaao auuadwD ioj spro7 uOgeaOUV
•z —V adai3
................................................. ........................rualiaa f4tlunb .Ialum jo
of ............... .
u0113unj u ST `z0 vzzgo flv `gaurag POOMUO}JOD 10j spuo7 uoiEtmoUV
-T-V aan2i3
ST ............................ (TO gzzgo nV) TT£oz uotluls ao3 aAina uolluinp puo-1
'6 aan2lA
LT •""..... """" " " " " " "(TO $zago nV) 6E6LT uollrls io3 an.ina uoi�ranp puO-1
g aan�13
LT ............................ (io gzzgo fly') T£SGT uotlr }S .zo; anana uoi}uanp puOrl
L ajar
9T ............................ (ZO vZZ80 fly') 991LT UOtIL'}s .IOJ anana u011i?anp PUOZ
'9 ajaw
9T............................. (zo �ZZgo fIV) S9TLT UOpu4s aO; anana UOt}eanp PUOZ
•S ajam
...... ( Pa I /P l) P q q
OT • sra.re as ;rM uuo�s lr n�aaun alr as a sza }uM aaa auunadra
t aaat3
g ••• pags.ia}uM)laaiZ) auiAadu.zo aoj asn purl jo duW
•E aaai3
9 •••••••••••••••• gaurig pOOMuO:4O3 jo zo VZzgo fIV paaiudwi ao; asn puul jo duw
'z aaai3
S.................................................................. .......................SUOIJUIS 2uuolluotu puu
snV;O suo m MUo�
Il gz
a zn�i3
i
saint i.1
List of Acronyms
AU
assessment unit
AVMA
American Veterinary Medical Association
BMP
best management practice
CFR
Code of Federal Regulations
cfs
cubic feet per second
cros
cubic meters per second
DMR
Discharge Monitoring Report
E. coli
Escherichia coli
EPA
Environmental Protection Agency
FDC
flow duration curve
GIS
geographic information system
gpcd
gallons per capita per day
ha
hectare
I/I
inflow and infiltration
I -Plan
implementation plan
km
kilometer
LA
load allocation
LDC
load duration curve
MGD
million gallons per day
mm
millimeter
mL
milliliter
MOS
margin of safety
MPN
most probable number
MS4
municipal separate storm sewer system
NCTCOG
North Central Texas Council of Governments
NDEP
Nevada Division of Environmental Protection
NETWPCC
New England Interstate Water Pollution Control Commission
NPDES
National Pollutant Discharge Elimination System
NWS
National Weather Service
OSSF
on -site sewage facility
SSO
sanitary sewer overflow
SWPPP
Storm Water Pollution Prevention Plan
SWQMIS
Surface Water Quality Monitoring Information System
TCEQ
Texas Commission on Environmental Quality
TIAER
Texas Institute for Applied Environmental Research
TMDL
total maximum daily load
TPDES
Texas Pollutant Discharge Elimination System
TRA
Trinity River Authority
USGS
United States Geological Survey
WLA
wasteload allocation
WQMP
Water Quality Management Plan
WWTF
wastewater treatment facility
Texas Commission on Environmental Quality v For Public Comment, May 2011
L LOZ AeW luawuaoo oilgnd aoJ in �4ijeno je;uawuainu3 uo uoissiwwOO se"i
iff"M
V AZ
Two Total Maximum Daily Loads for
�� Indicator Bacteria in Cottonwood
�r
`— Branch and Grapevine Creek
Executive Summary
This document describes total maximum daily loads (TMDLs) for Cottonwood Branch and
Grapevine Creek, where concentrations of indicator bacteria exceed the criteria used to
evaluate attainment of the contact recreation use. The Texas Commission on Environmental
Quality (TCEQ) first identified the impairments in the 2006 version of the Texas Water
Quality Inventory and 303(d) List.
Cottonwood Branch and Grapevine Creek (Segments o822A and o822B) are urban creeks
located in the north central portion of the Dallas-Fort Worth metroplex. Both are tributaries
to the Elm Fork Trinity River below Lake Lewisville (Segment o822). Grapevine Creek
(o822B) is the larger of the two creeks with a drainage area of 9,295 acres, while Cottonwood
Branch (o822A) has a drainage area of 2,964 acres. Cottonwood Branch is divided into two
assessment units (AUs) while Grapevine Creek consists of a single AU. The drainage area of
both AUs for Cottonwood Branch and the sole AU for Grapevine Creek lie entirely within
Dallas County with the exception of the upstream portion of the AU for Grapevine Creek that
lies within Tarrant County.
Escherichia coli (E. coh) are the preferred indicator bacteria for assessing the contact
recreation use in freshwater, and were used for development of the TMDL. The criteria for
assessing attainment of the contact recreation use are expressed as the number (or "counts ")
of E. coli bacteria, typically given as the most probable number (MPN) per hundred
milliliters (100 mL) of water. The contact recreation use is not supported when the
geometric mean of all E. coli samples exceeds 126 MPN per loo mL, or if individual samples
exceed 394 MPN per loo mL more than 25 percent of the time.
Historical ambient water quality data for indicator bacteria (November 2001 - October
2004) were analyzed on select TCEQ monitoring stations in the Cottonwood Branch and
Grapevine Creek watersheds. The geometric means of E. coli exceeded the standard in the
upstream AU of Cottonwood Branch, o822A — 02, and in the single AU of Grapevine Creek,
o822B_o1, with the geometric means calculated as 786 MPN /loo mL and 411 MPN /loo
mL, respectively.
The most probable sources of indicator bacteria within the watersheds of the impaired AUs
are storm water runoff from permitted storm sewer sources, dry weather discharges (illicit
discharges) from storm sewers, sanitary sewer overflows, and unregulated sources such as
wildlife, unmanaged feral animals and pets.
A load duration curve analysis was used to quantify allowable pollutant loads and specific
TMDL allocations for point and nonpoint sources of indicator bacteria. The TMDL
allocations are discussed in the section "TMDL Calculations."
Compliance with these TMDLs is based on keeping the indicator bacteria concentrations in
the selected waters below the geometric mean criterion of 126 MPN /loo mL.
Future growth of existing or new point sources was determined using population
projections. The TMDL calculations in this report will guide determination of the
exas commission on tnwronmental Quality 1 For Public Comment, May 2011
L LOZ AeW `luawwoo oggnd J0=1 Z Al!lenD lelu9wuoa!nu3 uo u0!ss!ww00 sexal
•(dwom) uuid }uauza2uuuw
fqtiunb ialuM s,a}uls ag} o} alupdn uu awooaq Ulm s'Iava asaq} `iunoiddu Vdg uodn
aouu inssv aiquuosuag puu uoi}ujuauiaiduiI
uoijudioijiud oggnd
uoi}uaollV PuoZ }uMngod
Ala3us3o uddew
uoiIuiaun iuuosuas
sisXiuuv a2uxurl
sisxiuuv aainos
uoiluogijuapi iuiodpug
uogtugaQ uiaigoad
:podaa sig} Jo suoi}oas �?uiMOUoi
aqj ui pagp3sap air XagZ •gQyu u 2uidoianap ui s}uauiaia uiuPao aapisuoo isnui bgoL aqj,
•saugapia puu suoquiaaa asog} gjine aouupaoaau ui
paauda.id uaaq suq juauinoop zQYiL sitU •(1661 `ddg) ssaaodd 7QyVd NJ : suors'aaQ pasng
- dj ?1bn6 iajvAl jof aounpinD sii ui uoi}oaaip iaq:pnj sapinoid VjH aqL •slQya aiqujdaoou
aoj sjuamwinbai Aum ii2aa puu Xiolnims aqj agpz)sap (OCT dAD ot,) OCT :Pud `WAD)
suoiluiii�a-d ivaapa3 Jo ap03 ag} Jo op ai }is ui (�dg) �foua uoi�oa }oad iu }uauiuoainug
.S-fl alp jo suoiluin2aa 2upuauiaidwi aq} puu 13V 131UM uualD atp Jo (p)£o£ uopoas
•suxas, iva}uao
-q:pou ui (ZZgo juaiu2as) aiiinsyAag axuq moiaq ianig nzuZ xao3 uzig aip of sauuingral
on,q `xaa.iD ouinaduzf) puu gouuig poomuo:RoD ui uPallzo uua}ouq joluoipui 2uipaaoxa of anp
asn uoi}uaaoaa lou}uoo aqj o} sluauuiuduii sassaappu -IGWI sign saipoq as }um paua }uaaT
ao paiiuduii 3o- 2uigsij ao `afg oijunbu jo :poddns uolluaaoai Xlddns ialum 2ui4uiip
su gons —sasn iuiogauaq aqj uiuiuiuui puu aaolsaa o} si uiva20 zd ZQML 01P Jo aniIoo fqo
kimud aqj, suxal 3o aluls aqj uo 2uuap.ioq ao ui (saipoq ia}um) sauur4sa puu `sffuq `saxui
`s iionaasaa `smua i }s paua4ua lqj io pa nuduii sassaappu uiva2oad aqj s zalun� am ns ski jo
fqiiunb aqj 2ui2uuuui aoj ssaooid gu iano ,suxal jo juauoduioo iofuw u si u AO-ld -JUKL aqL
•spjupuujs ,A4ijunb aaj-em anaigou of lap io ui sianai }uaaana mug paonpaa aq isnLu
puoi IuMngod aqj gonui nog aluumsa osiu }snuff slQya •sxLm aaglo ui passa idxa aq XLw inq
`pouad aunt} nd ssuuz jo sliun gjinn puoi u su passaadxa Xiuouxuzoo Si ZQya V •uoiivaaplsuoo
aapun luulniiod u ioj Xpoq nium aqj ;o fqiouduo ani}uiiuzissu age 3o saluuipsa aigissod
Isaq agi aau s,(,Wl •spiupuuls fqiiunb iajum aiquogddu sIi laaui iiiis puu antaoai um Xpoq
aa}um u jug} luulnUod .zuin3wud u ;o junouiu ag} sauiui iajap }i— ja2pnq u axis si Z(Iy� L V
•suxas ui
sialum aoujins panuduii ao3 padoianap aau 9-JUML lugl 2uunsua aoj aigisuodsai si agZ)s aqL
•Xpoq lalum palsii u jo juauuiuduii aqj o} sainquluoo jug} juLIniiod goua aoy j(jKj u doianap
}snuz saiu }s •spaupuu }s X11iunb aalum aiquotiddu Iaaul o} pa}oadxa jou aau ao ` }aaui lou
op lug} saa }um fqiluapi o} sa�uls iiu saatnba., 13V aa�uM uualD ivaapa3 aqj jo (p)£o£ uoi�oas
uoilonpo.ajul
•sisuq asuo- ,Kq -asuo u uo polonium aq gins sap!j!3uj a2aug3sip aalumNsuM
-qlmo.i2 aiMnj 2uipnpui `suogpipuoa 2ui2uugo iopun umails goua jo 44pudm anpuituiissu
Problem Definition
TCEQ first identified the impairment to the contact recreation use for Cottonwood Branch
(Segment o822A) and Grapevine Creek (Segment o822B) in the 20o6 Texas Water Quality
Inventory and 303(d) List (TCEQ, 2oo8b). All or part of each water body was subsequently
included on the 2oo8 and Draft 2010 §3o3(d) Lists under category 5a, indicating that they
are a priority for developing a TMDL.
The impaired AUs in Segments 0822A and o822B on the 303(d) list are o822A_02 and
o822B—o1 (TCEQ, 2oo8b) (see Figure 1). An AU is the smallest geographic area of use
support reported in the Texas Integrated Report. These AUs define the TMDL area
addressed in this report.
The standards for water quality are defined in the Texas Surface Water Quality Standards
(TSWQS) (TCEQ 2000). Contact recreation is the presumed use in Cottonwood Branch and
Grapevine Creek under the current TSWQS. E. coli are the preferred indicator bacteria for
assessing the contact recreation use in freshwater, and were used for analysis and modeling
to support TMDL development for the watershed. The criteria for assessing attainment of
the contact recreation use are expressed as the number (or "counts ") of E. coli bacteria,
typically given as the most probable number (MPN). For the E. coli indicator, if the
minimum sample requirement is met, the contact recreation use is not supported when:
• the geometric mean of all E. coli samples exceeds 126 MPN per loo mL;
■ and /or individual samples exceed 394 MPN per loo mL more than 25 percent of the
time.
Ambient Indicator Bacteria Concentrations
Table 1 presents a historical summary of ambient indicator bacteria data from the TCEQ
surface water database, Surface Water Quality Monitoring Information System (SWQMIS)
for November 2001 through October 2004. All AUs in Segments o822A and o822B are
included in the data summary. As indicated in Table 1, only the AUs associated with TCEQ
stations 17165 and 17166 (in AU o822A_02) and 17531 and 17939 (in AU o822B_01)
exceeded the geometric mean criterion of 126 MPN /loo mL.
Watershed Overview
Cottonwood Branch lies within the jurisdictional area of the City of Irving, Dallas County
(Figure 1). The creek is defined in the Draft 2010 Texas Integrated Report for Clean Water
Act Sections 305(b) and 303(d) (formerly the Water Quality Inventory and List) as starting at
Valley View Lane, at the south end of Dallas -Fort Worth (DFW) International Airport and
extending approximately six miles eastward to the confluence with Hackberry Creek. The
creek consists of two AUs (see Figure 0 defined in the Draft 2010 Texas Integrated Report as
follows.
AU 0822A_01 is the downstream portion of Cottonwood Branch, from the
confluence with Hackberry Creek at the downstream end to the upstream end at
North Story Road.
AU 0822A_02 is the upstream portion of Cottonwood Branch, from 0.5 miles
downstream of North Story Road to the upstream end at Valley View Lane.
AU o822A_02 is the focus of TMDL development.
Texas Commission on Environmental Quality 3 For Public Comment, May 2011
L LOZ [%eW 'juawwoo oilgnd j03 b f4ilenc) Ie;u9wu0jlnu3 uo u0issiww00 sexal
gloq jo an padsaad aqj uroij pags -1aWm xaa -1D 3u?nade -1'D aq} jo uo?lrod 2u?}nginuoa -uou e
pa -1ap ?su03 a -1e e3-1e a2uure-1p s}1 pue a*1 gaaoN (T a -1a?3) pnjq -1nqjjWeyQ W TT£oZ uoge }s
aU�s, jo ulea ilsdn s -1ajaur oo£ ffja�eurp o -1dde xaa -13 au?naduJD 01u? � ru�nq? r� paureuun
uu ern sure-1p puu �aa� -a -1ae 000`LT XIaleur�o -1dde jo f4Iaedea ale -10 }s e seq `juejd iamod
aaa e aol a?on-1asa-1 2u?Iooa a `a3ln gjjoN `Pagsaalum xaa -1D au?
pasola xpua nadu -1� aq} ul
-OD selleQ
66L 8£8`t — 8t ZZ / S£9-I3o weajlsdn 6£6L l
W S£S •P^lfl 3ua2a-d
.OD IueueL
lZl 6It`Z <— I ZI / a$P!j93o weajlsdn 1£SLI IO 8ZZ80
lit gliOK Plag.nd
-OD selleQ 991Lt
118 Ot8`t < -66 0£ / . P-- 'jolS —
O'selleQ M L 1 ZO `dZZ80
98L t9L 8£8`t < -6l Z£ / p� auil ;lag I�1
•oD selleQ / (�mH 891LI
It LL6— I> I£ Isa gljotl) 8t£ jndS
-OD selleQ L9ILI
tS 1 OOt`Z <— £ L / P ^l8 jngljdoeIN 'K
-OD selleQ _
Lt L£ 009`Z — Z 91 / pAlU o wea.gsdnow ££t 65£8I IO HZZ80
w seldweS u011eoo1 a uo!Ie3S nv
(1u�00L /NdW) (1w00LINdW) ll OOL /NdWI
ueew oulawoaE) ueew oljlawoaE) suollejouq ouo0 ;o 'ON
nv uollelS
3 peinseew
;o e6uea
•asn uotleajaaa Iaeluoa ;o lioddnsuou alealpul 10-97;Z;80 Pue ao Vza80 sf'V '�tuo
aapjo uzeaalsumop oI weaalsdn ue ul papinojd suollelS
(600-1 Isn2nV - Ajnp SIWOMS wo -I3 PaPLOluMoQ)
b00Z jegoloo - LOOZ jagwanoN J01 elep goo •3 6u1jopow aullnoi 10 kewwng L e1gel
•A4unoo lue.uu jL ui poda?� M3Q age �e �feMx-1ed jeuopeu -1a}ul ;o
IsaM s-1aluMpeaq SIT 01 urea -1Isdn �ijunoo selleQ u? aanrd ,�MuPl x-103 MR aql
qj?M aauanpuoa aq, uro -1j 31aa -10 aulnade -10 jo uo?lrod afled
ge s? To gzz8o fl
:sMOUOJ
SL, pauTdap nv auo ;o Sls?saoa ` -1ant nuoa alp o} saa4umpeaq
2 ar� g M aauap
alp uroj `xaa -1Z) aurnade -1f) jo gaea-1 a -1tIua aql rod-1 V Ieuo?leu-1a4ul MAQ Pue `au?nadu -1�
1pf
jo A41D UaddoD 30 f4ro `2uLul to "4?D agl 3o sua-1u 118"'0143. s�zn. age urg }?M sari 18a-1u
a2uure-1 aa-1 au?nade-1 a oroz `a3DI :T a -1n� ?3) A4unoo sulp(I u? (zz8o luauz2as)
Px U'(
-1anr . Ip I x -1o3 "'A agj gJIM aouanjju0a S11 01 urea -1lsuMop `Alunoo }ue-1auZ uT ffeM Jud
juuorluu -1a }ul jo Isom s -1a 4enepuag s }r uzoaJ sallw ua4 fjajeuzix0-1dde shop xaa -1D au?nadeaf)
-1anoa puel aq4 jo J, asuduwo saUO2aje3 asn puuj 2u?uluuza-1 aryl, •(z
ajges `z a -1n� ?3) ( %6T) aan - 3fu4seaJu? pue !( %zz) Ie?-1lsnpu ? /Ie ?aaaururoa `( %zz) Padojanapun
,( %T£) jeuuap ?sa-1 apnjau? pags -1a�uM age u? sasn puel lueu?uroQ •saj ?uz a-1enbs aaarj� �noqu
,(uq) sa-1ujoaq £zL si gaue -1g pOOMuoIIoD J0 zo Vzz8o nV �u ?sseduzoaua ua-1e a�uu?uap agy
bacteria loading and streamflow. Power company staff report that North Lake rarely releases
into Grapevine Creek, with discharges typically occurring a few years apart (personal
communication, John Mummert, TCEQ, December 1, 2009). Consequentially, for the
remainder of this report the Grapevine Creek watershed will be defined to exclude the
drainage area of North Lake resulting in a remaining watershed area of 3,x73 ha (about 12
Figure 1. Cottonwood Branch and Grapevine Creek study area showing locations of AUs and
monitoring stations.
exas kommission on environmental Quality 5 For Public Comment, May 2011
6 LOZ Aen `Iuawwo0 opgnd BOA 9 AIllenO leluewualnu3 uo uoisslwwo0 sexal
(z algeZ `.£ a n2i3) aanoo puel @gljO /z asuduzoo sauo2aleo asn puel2ututeuzaa
aqj, ( %t,i) 1,0!luapisaa pu>e ` sz) le ?.zlsnpul /leto.zawLuoo (%9z) padolanapun `(/££)
aanpna}se.ijui apnlaui pagsaalene Aaaa0 auTnade.,D aql u1 sash puel }ueulwoQ •(sallw a unbs
60 8ZZ80(v Pdaleuual �looaJ
aulAadeaE) pue 'Zp yZZ80 nv paaledwi 'goueje poomuopoo aol tiewwns asn puel Z algel
(.Soot ao3 saleunlso aanoo /asn puel sluasaidag •< se elep> laui asno upealo uzoo•s euin p'MeeM�>
allsgam asnogfuiaealo Uwa SI`) (9001:)N) s}uaww@Aoo jo liounoD sexaZ lealuaD quoN :aoinoS)
goueje poomuogoo )o ZO dZZ80 nv paiiedwl ao) asn puel }o deal -Z ain6i j
saaeloaq £LO`£
%001
saaeloaq £ZL
sliviol
%001
8Z'
8
19'
b
aaleM
Z8'1
95
LI*9
Sb
sIard
SL'£l
£Zb
ZI'61
8£!
o.mlon.Ase.yul
170'9Z
OLL
£S 1 Z
991
leulsnpul /leloiaw —D
89'SZ
68L
99'IZ
991
padolanapun
cc
LZO, I
10' 1 £
bZZ
leuuopsa2l
lelol ;o % I easy
( LO 8ZZ80) )laajo aulnadejLZ)
lelol ;o % I easy
(ZO `dZZ80) UoUeJB poomuolloo
tio6aleo asn pue-i pa;eBeB6y
60 8ZZ80(v Pdaleuual �looaJ
aulAadeaE) pue 'Zp yZZ80 nv paaledwi 'goueje poomuopoo aol tiewwns asn puel Z algel
(.Soot ao3 saleunlso aanoo /asn puel sluasaidag •< se elep> laui asno upealo uzoo•s euin p'MeeM�>
allsgam asnogfuiaealo Uwa SI`) (9001:)N) s}uaww@Aoo jo liounoD sexaZ lealuaD quoN :aoinoS)
goueje poomuogoo )o ZO dZZ80 nv paiiedwl ao) asn puel }o deal -Z ain6i j
In the Grapevine Creek watershed, North roxi ately 17,000 acre- feetrand drains viasan
power plant, has a storage capacity of app
stream of TCEQ
unnamed tributary
into Grapevine Creek approximately 300 meters up P
station 20311 at MacArthur Blvd. (Figur Grapevine Creek Lake watershed nd its drainage area are from the perspective of considered
a non - contributing portion of the
bacteria loading and streamflow. Power company staff report that North Lake rarely releases
typically occurring a few years apart (personal
into Grapevine Creek, with discharges 09). Consequentially, for the
communication, John Mummert, TCEQ, December 1, 20
remainder of this report the Grapevine Creek watershed will be defined to 3 ha(aboutl12 a remaining watershed area of 3
drainage area of North Lake resulting the Gra evine Creek watershed include infrastructure
square miles). Dominant land uses p and residential (14 %). The
(33 %), undeveloped (26 %), commercial/ industrial (25%), Table 2).
remaining land use categories comprise 2% of the land cover (Figure 3; Texas, which has a
Cottonwood Branch and Grapevine Creek s lie within
m d wTenters, resulting in a wide
subtropical climate characterized by ho Avera e high
annual temperature range (National Weather Service (NWS), 2009). g
August. Fair
temperatures generally reach their epst to peratures obetween ummer, which are often bove 100°
skies generally accompany the highest F; however, the low temperature rarely exceeds 8o o (NWS, During winter,
F at night ad of extreme cold
the average low temperature is 331 F in early to mid January d pert is 34.7 inches (881
generally do not last long (NWS, 2009). Annual average precipitation
mm) of rain and 2.5 inches (64 mm) of snow.
Endpoint Identification
All TMDLs must identify a quantifiable water quality target that indicates the desired water endpoint serves
quality condition and provides a measurable a and the criterion D gTMDWhich to evaluate
to focus the technical work to be accomplished
future conditions.
The endpoint for the TMDLs in this report 00 mL Tin TCottonwood concentrations Branch (impaired AU
geometric mean criterion of 126 MPN /10
o822A_O2) and Grapevine Creek (impaired AU o822B_01).
Source Analysis
Potential sources of indicator bacteria pollution can be divided into two primary categories:
regulated and unregulated. Pollution sources that are regulated the National Pollution
Texas Pollutant Discharge Elimination Sy
Discharge Elimination System (NPDES). Examples of regulated sources in
• municipal and private domestic wastewater treatment facility (WWWTF) discharges;
• industrial facilities with individual storm water permits and /or discharging treated
industrial wastewater and /or groundwater; and
■ storm water discharges from industries, construction, and municipal separate storm
sewer systems (MS4s).
Nonpoint source pollution originates from multiP under the TPDESIor y carried NP to surface
waters by rainfall runoff. It is not regulated by permit
For Public Comment, May 2011
Texas Commission on Environmental Quality
L LOZ AeW 'luewwoo oilgnd X03 g A4!lent) lelu9wuoJinu3 uo uoissiwwoC) sexaj
uanif) ''iu�aad JfM uuo ;S leaauOD II asugd SdQd,L aqi aapun paaanoa osle si :pod.,, aq4
`uoi4ippu ui •Iiutaad aq} ui paljpads si 4iuul mol; ou puu `(Jjouna pue not }u}idpaad o} 13afgns)
aigeuun puu Jua:giuLaa}ui paaapisuoa si a2aegasip aqZ •suoi�uaado �utai- apuaaatu �uollo3
jjouna jo loaiuoa aq4 lu palaau4 si Iluuad aqZ auinaduaf) of sa2jugasip �eq (6So)
IIe3ino auo sapnlaui }uq; (t t000aM) 1iumad as ;ent uilo }s lunpinipui ue suq aaodaiV Md(l
(t aan2lA) 3ZMM luuol2ag lua4u@D (BIZ) X4poq;nV aanid
X41up,L aq4 Xq panaas ua.iu utalsxs u0143alloa pajamas pue .iawma4sum aq4 uppm paluaol air
snFr paaieduti qloq jo spagsaalem aai ua aqZ 'uivaa ;s aaq}ia jo pagsaalem aql uiglin� paleaol
saa2.iugasip 3ZMM lepisnpui .io ai ;sawop pazaoglne Xllenpinipui ou aau aaaq} Xl ;uaaanD
s014i113e=l .ialennOMM Jeulsnpul pue 311sawoa
-To pue zo Vzzgo snV paaiudwi
ui saaanos paI4iuzaad aq4 luasaadaa st w puu `saris uoi ;ana;suoa `saulsnpui woq sa�augasip
aa}um LuiO4S 'SHQdN aT puu SHU U aq} aapun liuuad Xq paiuln2aa aau saaanos papiuuad
sewnoS paUiwaad
o ea pue/asn puel sluasaadaa pue <dse• a }epe}au/asnog2uvieali /tuoa•sde �"m3P-mmn> a s9 an asno Wupva I� 3 Q
SI`J qOaL,)N) :aaanoS)
paysJaleM XaaJO auinadejE) jo; asn puel ;o dew g ain6id
!Mn- WOMinuo�.ua0rx� 60CLJ30]
MWLL `
a
m
`w
b << N
-
m
m Sa4ad d
lequapisaa
m
ialeM
seq!Ign /ampnilsequl
Y
pedoleeapun
M g a� s�l�ed
m ,;�b� ��i leulsnpwAepjawwoo
O
sapW leuoileuiawl ti £ Z L 0
sjalawOMI L 9 5 b F z l 0
the circumstances of the permit, this outfall will be treated as part of the TPDES - permitted
storm water discharge load.
Sanitary Sewer Overflows
Sanitary sewer overflows (SSOs) are unauthorized discharges that must be addressed by the
responsible party, either the TPDES permittee or the owner of the collection system that is
connected to a permitted system. SSOs in dry weather most often result from blockages in
the sewer collection pipes caused by tree roots, grease, and other debris. Inflow and
infiltration (I /I) are typical causes of SSOs under conditions of high flow in the WWTF
system. Blockages in the line may exacerbate the I/I problem. Other causes, such as a
collapsed sewer line, may occur under any condition.
Determination of the importance of SSOs as a source of bacteria loadings is typically difficult
to assess. A damaged sewer line near TCEQ station 17166 in Cottonwood Branch (Figure 1) is
suspected of being a major source of high E. coli values determined for samples collected at
this station in 2oo8 during TMDL bacteria data collection. The sewer line has since been
repaired. The TCEQ - maintained database of SSO data reported by responsible entities in the
Dallas-Fort Worth Metroplex was reviewed for the period September 2003 — February
2009. The database contains entries that appear to be within the Cottonwood Branch and
Grapevine Creek watersheds, though most of these entries are the result of relatively minor
line blockages. Based on available information it is concluded that SSOs are not a
widespread source of bacteria to the two creeks; however, they may at times be a significant
source in localized portions of either creek.
TPDES - Regulated Storm Water
When evaluating storm water for a TMDL allocation, a distinction must be made between
storm water originating from an area under a TPDES - regulated discharge permit and storm
water originating from areas not under a TPDES - regulated discharge permit. Storm water
discharges fall into two categories:
• storm water subject to regulation, which is any storm water originating from TPDES
Phase I and Phase II MS4- permitted discharges (Table 3), permitted industrial
storm water areas, and permitted construction site areas; and
• storm water not subject to regulation.
Table 3. Regulated storm water discharges in AUs 0822A_02 and 08226_01
Impaired AU
Regulated Entity Name'
NPDES Permit Number
TPDES Permit Number
0822A02
North Texas Tollway Authority
TXS000703
WQ0004400
0822A02 and 082213 01
City of Irving
TXS001301
W00004691
0822B01
City of Coppell
TXR040375
TXR040000
082213_01
City of Dallas
TXS000701
WQ0004396
0822B01
DFW International Airport
TXR040044
TXR040000
a Although the jurisdictional boundary of the City of Grapevine is within the Grapevine Creek
watershed, that portion of the city boundary is not within the City of Grapevine MS4 and thus is not
a permittee in the Grapevine Creek TMDL.
Texas Commission on Environmental Quality 9 For Public Comment, May 2011
l 6OZ AeW 'juewwoo oilgnd JOJ M A4!lenp le;uawuoa'nu3 uo uoisslwwOO sexal
1 ogy alp ui pagtluapt sa2augoslp ll;)IUI jo salduzpxa sapinoad (DDdMIHN) uoissiTu oD
loaluOD uollnllod aaluM alulsaalul puul2uH maN •suoilnquluoo laaatpul ao loaaip aaglla
su pazpo2aluo aq upo sa2augosrp IioiiII « sailinilop �uilg�g aag �foua�aauza ujoaj 2utlinsaa
sa2augos.p pup uoiluzuoglnp alpaudas p ao liuizad Ipaaua2 sigl of lupnsand sa2augosip
ldaoxa `aalum uuols jo pasoduzoo Slaaqua lou si lugl camas uuols alpapdas ludynunuz u
of a2apgosip Xuv„ `sp stsw II asegd aoj 0000tolM -oN Ilutaad luaauao SHQds ui paugap
si «a2augos.p llz)!Ul„ uzaal aqZ •suoilipuoo aaglLam lane pup �fap gloq aapun savapgosip liol it?
pup sllujlno palliuuad uzoaj suwuaals agl aalua um aalum uuols palulaw woaj spuol uzialoug
sa6aeyosia imin
xaaaD auinaduao ui io gzzgo nv aoj 2utprol tSw agl jo lapd sp
paluaal aq UyA laodatd AA qQ ao3 liuzzad aalum umols lunptnipui agl ui 65o UpjIno `ffisnouaad
palou sV •(t aaat3) sliuzaad tSW jo pan palupL2aa agl uigl�m si pagsaalum (to gzzgo
fIV) xaaao auuaduao agl3o luaoaad g•tg pup `sliuuad tSW aapun palulaaa si (zo Vzzgo)
gouuag poomuolloD jo ny paaiudurt agl jo pagsaaluni aailua au •(E alquy) Iluuad I aspgd
u anuq f4!joglnV fun&lloZ suxaZ glaoN pup `2utnal jo ii4iD `sulluQ 3o X41D agl `spagsaalum oml
agl ui sailtlua palltuuad tSW agl 3O •pa.V paziuugafl snsuaD 000z agl pup sliurtl ,Slio agl
jo spaap 2utddulaano ao uopoasaalui agl su paugap si paap IpuopoipsLZnf agl `sliuraad II asuqd
ao3 -sltunl A41a agl Xq paugap si paau feuoilotpsianf agl `sliuizad I asugd ao3 •Xltlua paluln2aa
agl jo sa. jppunoq luuopotpsunf aql uigllm uaau �fpnis aql jo uoilaod lugs si sliuuad tSW II
pup I asugd Xq paaanoo )laaaD auinaduao pup gouuag poomuolloD jo uoi2aa aigdua2oa2 aqZ
(seaie jalem wools pajeInbojun/pa;efn6ai) paysaa;eM MaaJO auinadejo ,t7 am6i j
t
1'
Dam s3N ! 7
r
iaflw jCUo!jPUlajUl b F
F
l n
saajawo��}� ( 9 s
b F
7 l 0
Discharge Detection and Elimination Manual: A Handbook for Municipalities (NEIWPCC,
2003) including:
■ Direct illicit discharges:
• sanitary wastewater piping that is directly connected from a home to the storm
sewer;
• materials (e.g., used motor oil) that have been dumped illegally into a storm
drain catch basin;
• a shop floor drain that is connected to the storm sewer; and
• a cross- connection between the municipal sewer and storm sewer systems.
■ Indirect illicit discharges:
• an old and damaged sanitary sewer line that is leaking fluids into a cracked storm
sewer line; and
• a failing septic system that is leaking into a cracked storm sewer line or causing
surface discharge into the storm sewer.
Unregulated Sources
Unregulated sources of indicator bacteria are generally nonpoint and can emanate from
wildlife, various agricultural activities, agricultural animals, land application fields, urban
runoff not covered by a permit, failing onsite sewage facilities (OSSFs), unmanaged feral
animals, and domestic pets. Most of these unregulated sources are limited in scale in the
TMDL study area because of the highly urban nature of the area.
Wildlife and Unmanaged Animal Contributions
E. coli bacteria are common inhabitants of the intestines of all warm- blooded animals,
including wildlife such as mammals, birds, and unmanaged feral animals. In developing
bacteria TMDU, it is important to identify by watershed the potential for bacteria
contributions from wildlife, birds, and unmanaged feral animals. Wildlife are naturally
attracted to riparian corridors of streams and rivers. With direct access to the stream
channel, the direct deposition of wildlife waste can be a concentrated source of bacteria
loading to a water body. Fecal bacteria from wildlife are also deposited onto land surfaces,
where it may be washed into nearby streams by rainfall runoff. There are currently
insufficient data available to estimate populations and spatial distribution of wildlife and
avian species in the watershed. Consequently, it is difficult to assess the magnitude of
bacteria contributions from wildlife species as a general category. Studies in other
watersheds have found avian species to be important contributors to the bacteria load (e.g.,
Hussong et al., 1979; Hyer and Moyer, 2003). There is also little information available on
contributions from feral animals in the watershed.
Unregulated Agricultural Activities and Domesticated Animals
A number of agricultural activities that do not require permits can also be sources of fecal
bacteria loading. Given the fact that the Cottonwood Branch and Grapevine Creek
watersheds are highly urbanized, livestock and other domesticated animals are either not
found in the watershed or exist in very small numbers. Therefore, livestock and other
domesticated animals are not considered a significant contributor of bacteria loads in the
two impaired AUs.
Texas Commission on Environmental Quality 11 For Public Comment, May 2011
6 LOZ AelN 'luewwoo ollgnd Jod Zl A4!lenlo lelu9wuoa'nu3 uo uolsslwwOO sexal
•sanbiugoa} Jo ,'4aiaun u
g2noagl pagsilqulsa aq Xuuu digsuoilulaa aU •}uiodpua paaisap alp anaigae Ulm }egg suol }do
}uaLua2uueuu jo uoilunluna ag} ao3 smollu iI 'IQyQ.L e 2uidolanap ui luauoduuoo luu:poduui
ue si s2uipuol jo aoanos ag} puu X4genb aalun� uueaaisui uaanaq digsuoi}ulaa aq} 2uigsilquisg
SISAIBUV 36e )JU11
•uneoWn si )laaiD auinadua0 pue gouuag poomuolloZ) jo
sagouaa paziedun ag} 2uigoeaa s }ad uzog spool uuaojiloo 1ma3 jo ao mUlu2is pue uou}ngi woo
lunpu agZ loia }sip goua ui
q}ine splogasnoq ;o uoi }ngialsip lui�uds uana pauunssu uu pue
fIV goua apisui pa}uool joialsip gaea jo a2ujuaoaad aq} uo pasuq aluuupsa age gjim (g2gu600z
`OODJ.DN) spiaisip uopulndod ffq saaquunu plogasnoq Sooz (OOo�N) s�uauuuaano0
jo liounoD suxaZ lualuao gaaoN 2uisn pauiuuaa}ap sung splogasnoq jo aaquunu aq,L
•(600z `VWnV) plogasnoq aad (£><L•o) sieo pue (z£9•o) stop
jo .zagwnu pawuui}sa (vwnv) not }uioossv luoip W �Saeuuajan uuz)uauiV uo paseq palulnoluo
aaam saluuit }sa uoi�ulndod dad •(000z iajangoS) stop JOJ Ifup .gad 60ix£•£ pue �uo s ao3 �fup
aad gotxt•S jo salua uoi}onpoad uuojiloo luoaj paiuwilsa uo pasuq aau s2uipuol pa}u -tupsa aq,L
sleo 8oi x VS; pue stop 6ot x CT : Cup aad lewiue aad peol wao;iloo leoa; palewilsa (000z) salangaS,
sleo EiL•o :sSop z£9•o :aluwilsa plogasnog -aad leuoileu vWAV 800z q
alswilsa paseq- loialsip uoilelndod )ODIDN Sooz e
b6b'b
bb£`bZ
£Z£`8
LL£`L
£L9`II
l0 UZZ80
LSl'Z
£89`11
b66'£
obS`£
Z09`S
Zo VZZ80
, sleO
uo!lonPOJd Allea
, s6oa
uollonpoJd Alleo
q sleO
jegwnN
q s6oa
jegwnN
esplogosnOH to
jegwnN palewlls3
ny
(601 x) uogonpald Apep wioploo
leoal palewilse nagl pue pagsjalem eaae bawl agl ui sled jo sjegwnu palewlls3 elgel
-Sim puu stop opsauuop uzoaJ pool
uuao;iloo luoa3 aq} jo aluuipsa ue sapinoad puu pagsaalum eaae 'I(Iml aql jo snd alp ao3 s}uo
puu stop jo aaqumu paluuui } a} sazuuuns p alge •2uipuol uiaapuq 3o aoanos lei }ualod
u aq uuo puu suaau uugangns puu uugan uuoaj jjouna Xq suuuaa }s o} papodsuua} si sluo puu
stop uuoaj aa:auw luoa3 •slad ou}sauuop ioj spuol 2upulnoleo ui paaapisuoo s }ad Xluo aq} aau
squo pue stop `upp }uunalaa jo ,,�4iliqupunu aqp puu }oafoad sib jo aan}uu uugan aqj uo pasug
sled 31}sewoa
-fuussaoauun si euaajmq jo saoanos }uuogiu2us su s3SSO
jo uoi }uaapisuoo iagpnj `siq} jo asnuoag •alouuaa si spagsaa;um onl asagj ui s3SSO Xuuuu jo
Pooq ?laxil ag} s3SS0 Xq Paoinaas aq llps pinoo suaae }uauuuaa} pue not }oalloo pazulua}uao aqu
ui papnloui suaau ag} jo suoi� uod lluuus juLp alq!ssod si }i g2nogllV •3�M luuoi2 lualuaD
4iaoglnV aanig 'CI!UuJL ag} Jo sula}sXs }uauuea11 puu uopoaum aalumalsum pazulua}uao
Xq panaas air Aaaaz) auinadua0 puu gouuag poonjuo:RoD jo spagsaalum aailua aq} asnuoaq
eaae Xpn }s ZQWZ aqp ui 2ulpuol Lua}ouq jo aoanos aofum u paaapisuoo iou an, s3SSO 2uuiiud
saili1i3e=l 06yames ells -uo 6uiIie=l
"Wo aulnade.ig pue goueje poomuolloz) ul el.ialoee Jolealpul aol speo-1 Allep wnwlxew lelol omi
Generally, if high bacteria concentrations are measured in a water body at low to median
flow in the absence of runoff events, the main contributing sources are likely to be point
sources or direct deposition. During ambient flows, these constant inputs to the system will
increase pollutant concentrations depending on the magnitude and concentration of the
sources. As flows increase in magnitude, the impact of point sources is typically diluted, and
is therefore a smaller part of the overall concentrations.
Bacteria contributions from regulated and unregulated storm water sources are greatest
during runoff events. Rainfall runoff, depending upon the severity of the storm, has the
capacity to carry bacteria from the land surface into the receiving stream. Generally, this
loading follows a pattern of low concentration in the water body just before the rain event,
followed by a rapid increase in bacteria concentrations in the water body as the first flush of
storm runoff enters the receiving stream. Over time, the concentrations diminish because
the sources of bacteria are attenuated as runoff washes them from the land surface and the
volume of runoff decreases following the rain event.
Load and Flow Duration Curve Analyses
Load duration curve (LDC) analyses were used to examine the relationship between
instream water quality, the broad sources of bacteria loads (i.e., regulated point source and
regulated /unregulated storm water), and are the basis of the TMDL allocations. The strength
of this TMDL is the use of the LDC method to determine the TMDL allocations. -
LDCs are a simple statistical method that provides a basic description of the water quality
problem. This tool is easily developed and explained to stakeholders, and uses available
water quality and flow data. The LDC method does not require any assumptions regarding
loading rates, stream hydrology, land use conditions, and other conditions in the watershed.
The U.S. EPA supports the use of this approach to characterize pollutant sources. The TCEQ
and the Texas State Soil and Water Conservation Board, identified this method as a tool for
TMDL development. In addition, many other states are using this method to develop
TMDLs.
The weaknesses of this method include the limited information it provides regarding the
magnitude or specific origin of the various sources. Only limited information was gathered
regarding point and nonpoint sources in the watershed. The general difficulty in analyzing
and characterizing E. coli in the environment is also a weakness of this method.
The LDC method provides a tool for estimation of existing and allowable loads by utilizing
the cumulative frequency distribution of streamflow and measured pollutant concentration
data (Cleland, 2003). In addition to estimating stream loads, this method allows for the
determination of the hydrologic conditions under which impairments are typically
occurring, can give indications of the broad origins of the bacteria (i.e., point source and
storm water), and provides a means to allocate allowable loadings.
Data requirements for the LDC are minimal, consisting of continuous daily streamflow
records and historical bacteria data. While the number of observations required to develop a
flow duration curve is not rigorously specified, the curves are usually based on more than
five years of observations, and encompasses inter - annual and seasonal variation. Ideally, the
drought of record and flood of record are included in the observations. Daily average stream
flows over a period of 15 years (08 August 1993 — 07 August 2008) were used for this
project.
Texas Commission on Environmental Quality 13 For Public Comment, May 2011
6loZ AeW 'luawwoo oilgnd ao3 K Al!lenC) Ielu9wua[nu3 uo uoissiwwOO sexal
pallold uaql sure pool gong •2uipuol yoo •g au} 2utllold jo sasodnnd aoj anlue „papaaoxa pool
sXt,p jo Iuaoaad„ aql sauzooaq gatgne ,'papaaoxa neoll sffup luaa iad,, aoj anlun slt auiuualap
of ulup DQ3 aql of paaudwoo sure 2u1puol up puq goua noj neollumaais paluioossu aqu
-puol uualoug u of palaaeuoo puu Iuawanns w jo Sup atp uo neolJuzuaals atp
gline paluioossu sure Iuawannsuaw iloo •g p?ouolsiq goug •(ZlgVlu) gaivasag luluauzuoatnug
pagdd� 3o alnlilsul suxas, aql `aoloualuoo 'I(IKL aq1 Xq paloalloo ulup luuopippu
snouun (z) puu `asuqulup SIWOAA S bgDZ aql uwaj pauiulgo puu wun2oad sn Ara uuaID
suxau atI puu uzua20nd 2uuoliuoW �fltluna aaluM aou3anS bgDu aql aapun paloalloo ulup
aullnoa (i) :saoinos oY4 uwozj pauiulgo aaane 800z Isn2nV — tooz aagwanoN uwon3 ulup 1loo
•9 imiaolsill •D(I l uivalouq alquneollu atp uo posodwuadns uaql aaane ulup upalouq luoiaolslH
•slxe -X atp uo puol olquneollu aql aeoqu ao lu sure
pool uiaalouq aqI Imp sXup jo Iuaonad aql Iuasaadaa sm -x aql 2uolu sanlun aouupaaoxg •(stxu
-x) anlue aouupaaoxa sli Isuiu2u (spcu-) anlue pool uinalouq goua slold anano 2uillnsan ago
Sup /spuooas * Euz /'IW 001 000,0001,98 = (Sup /Nclw 01) aolouj uoisnanuoD
Ci103 •a) -ITU oot /Ndw 9zi = uoualpo
:aaagM
aolouJ uoisnaeuoo , (suzo) Moll..), uoiaalino = (fop /NdW) 'IGKL
:2uipuol alquneollu utninumuz jo anano 'IQLQU aql su DQg aql sSuldslp Slanlloaga situ -Xup aad
satuoloo ui �utpuo, of Inanuoo of nolou3 uoisnanuoo aqI Xq puu (,Iw ooi /x(lw 9zt) uotaaltno
yoo •g aql Xq sannna uoilunnp neoT1 aql 2uolu anlun neoU wuanls goua 2u!Xldtllnw Xq padolanap
@nano SO(II •sanano uolluanp neolluzuaals aql uwoj ulup aql puu (-Iw ooi /INdw 9zi)
uouallno X11junb nalum oivawnu Iuaaano aql uo pasuq padolanap uaql @Wane sDQrl upaloug
•suotlipuoo poop ao neou
g2lq 3o spotnad 2uunp nn000 /o 2uigouoaddu sanlun aligne suotlipuoo Iq2nonp ao neojl Wool
2uunp nn000 /ooi auau sanlun aouupaaoxg •sDw -X aLp uo anlue neop paluioossu aqI aeoqu
no lu sum neop Imp sXup jo luaonad aqI Iuasaadan sum -x aqI 2uolu sanlun aouupaaoxg •(stxu
-x) anlue aouupaaoxa slt Isuiu2u (stxu -X) anlue neoll goua 2up4old (£) puu `(t + sluiod ulup
jo aagwnu aqI jo fqtluunb - �luun) papaaoxa sure neop goua sXup 3o luaonad aqI 2upulnoluo
(z) `Isaneol of Isag2tq wotj ulup moU Xltup aql 2ut4uua (i) Xq polunaua2 sure DQq aqu
•uolluls goua noj D(IA u dolaeap
Isng of pasn anane (suzo) puooas gad snalaw oigno jo sliun ui ulup neog XItup aql, •(ii£oz
puu `6E6Li `i£SLi) uanu Xpnls aqI ut suotluls 2uuoliuow OADI aangl aql noj padolanap aaane
io gzzgo fly no3 sDQZ puu s�Q3 (9gjZi puu 991Li) uanu Xpnls aqI ui suotluls 2uuoltuow
agDu onel aqI noj padolanap aaane zo vzz8o fIV aoI sOQrl puu (s3Q3) sanano uol np neolA
sasuanoui uoilulndod
aanlnj jo oI anp nn000 �fuuz sa�autosrp 3u� uzo t snoop luuotlippu lute f1t�?qugond
aql noj lun000u Iug1 saluwllsa fIiouduo aaulnj loallaa of palsnfpu anane spnooan a12010npxq
aql `suoilulndwoa puol luulnllod aqI jo sasodand ao3 •sollua uanu a2uum 3o uolluagddu
uo pasuq to gzz8o puu zo vzzso SPIV uitltm paluurtlsa @Wane sneolq Aaano autnadunf)
puu gouung pooneuolloo jo lugl of asn puul jo ,�4tauiiwis aql puu ,fltuzixond uo pasuq uasogo
sure puu `uanu Xpnls 'I(IVU atp jo Isua aqI of sapw h Xjg2noa `sulluQ thou ui paluool Si 31aano
situ •)laaao )too -d alight uo oozLSoSo a2u2 (SgSfI) faAznS iuoi2oioa`J -s-fl worj pautulgo
anane smaX 8t, Isud atp woa3 snook a2unanu Xltu(l •suoiluool papaau lunaeas lu ulup neojl
uual -2uol jo Aaul u si anatl aouis uanu -I(I j , alp uigline snoop. aluurtlsa of ,4Iussaoau sure 11
ME)OJO auinadejE) pue uoueag poomuolloo ui eualoeg @oleo pul aol speo-1 Ape(] wnwixeW jelol OMI
on the load duration curve at its percent exceedance. This process was repeated for each E.
coli measurement at each station. Points above a curve represent exceedances of the bacteria
criterion and its associated allowable loadings.
The flow exceedance frequency can be subdivided into hydrologic condition classes to
facilitate the diagnostic and analytical uses of FDCs and LDCs. The hydrologic classification
scheme utilized for the Cottonwood Branch and Grapevine Creek TMDLs is as follows: high
flows (o — 10 %), mid -range flows (10 — 50 %), and low flows (50 — 100 %). These three flow
regimes were based on hydrology (slope of the FDCs). Additional information explaining the
LDC method may be found in Cleland (2003) and NDEP (2003).
Load Duration Curve Results
FDCs and LDCs were developed for the two TCEQ monitoring stations within AU o822A_02
and the three TCEQ monitoring stations within AU o822B_oi. LDCs and FDCs were
developed for all stations for which adequate historical E. coli data existed in order to
present a complete representation of conditions in each impaired AU. However, only the
median loading of the high flow regime (5% exceedance) for the most downstream site
within each impaired AU was used for the Cottonwood Branch and Grapevine Creek TMDL
calculations. The most downstream station within AU o822A_02 was station 17166, and the
most downstream station within AU 0822B_o1 was station 20311. The median loading of
the high flow regime (or the 5% exceedance point) is used for the TMDL calculations,
because it represents a reasonable yet high value for the allowable pollutant load allocation.
At the TCEQ, monitoring station locations (Figure 1), load relationships and possible sources
were defined through LDCs created with historical E. coli data and the associated daily
average flow for the flow duration curves. Load duration curves developed for stations within
impaired AU o822A_02 of Cottonwood Branch (Figures 5 and 6) indicate E. coli loadings
often exceeded allowable loadings under all flow conditions, including those not influenced
by rainfall runoff. Similar patterns were also found at stations on Grapevine Creek, for which
exceedances were often reported under all flow conditions, and during both dry- and wet -
weather conditions (Figures 7 — 9).
Seasonal Variation
Federal regulations (40 CFR §130.7(c)(1)) require that TMDLs account for seasonal variation
in watershed conditions and pollutant loading. E. coli data were examined and no
statistically significant seasonal variation was found in Cottonwood Branch and Grapevine
Creek (Millican and Hauck, 2010). E. coli data are thus not considered in the TMDL
calculations.
Margin of Safety
The margin of safety (MOS) is used to account for uncertainty in the analysis used to develop
the TMDL and thus provide a higher level of assurance that the goal of the TMDL will be
met. According to EPA guidance (EPA, 1991), the MOS can be incorporated into the TMDL
using two methods:
• Implicitly incorporating the MOS using conservative model assumptions to develop
allocations; or
• Explicitly specifying a portion of the TMDL as the MOS and using the remainder for
allocations.
Texas Commission on Environmental Quality 15 For Public Comment, May 2011
L lOZ AeW `;uawwoo oilgnd ao-� 9� A4ilena lelu9wuoa'nu3 uo uoissiwwOO sexal
•(SUUO ozo•o) SP
EoL•o = mo7 :(suua t go'o) s ;a 6s•T = a2uea -pry '(swD obE•o) s ;a 107T = 4!H :a u uo9MS s►ql W a2uul gDua
ui snAol{ uetpay� sal�ue.4 se poleu�tsap aae Juana uopeltd aad e ;o sanog tz utgjFA pajoalloa saldwus goy g
,ZO vzzgo nv) 996L6 uoge ;s jol ammo uoi;emp peo-I -9 ain6id
lu8n3 JaglBBAA laM v luan3 JayleGAA IOM -uoN + uoual!jo ueewoao le peol e!geMo!!y-
papaaaxe peon sAep ;o;uaaaad
%OOL %06 %08 %OL %09 %09 %04 ME %OZ %OL %0
80 +3' l
60 +3' L
+
+ + + + * + 0 1+3 L m
+ +++ +v + O
+ n
+ + LL +3'L
v Z
v + v v + a
v m
$ + ZL +3 L
+ + v
+ £L +3'L
v
v
SM01j MOB SMO!j 96uea -p!W SMO!j g61H
VL +3'L
(SUuz) Two) sp
Eob•o =mo l !(suta Lzo•o) sp z96•0 = a2uez -p W !(swa z9T•o) sp TCS = q2!H :aae uoue }s sitl} lu a2uua gaua
ut snoop ueipaw sal2ue.4 se paleu3isap aae Juana uollel►dtoaad a ;o sanog bz uigl>M paloalloo salduies }loa g
(ZO vzzeo nv) 996L1 uoijels ao; emno uoi;emp peon •9 am6i.�
lu8n3 JagleaM 1aM v luan3 J9glE8AA 19M -uoN + uopalpo ueawoaE) le peon elgeMoIIV-
pepeeoxe peol sRep jo luaoaad
%OOL %06 %OS %OL %09 %09 %04 ME %OZ %OL %0
v +
v +
v
v
v v VV
v
v
v
sM0 1=1 Mo'7 sM013 96uea -P!W SMOI� 46!H
90+31
60 +3'L
m
OL +3 L c
3
Z
LL +3'L a
N
ZL +3'L
L +3'L
>l1a10 auinadejE) pue youejg pooMuolloo ui eualoee ioleoipul aol spe0-1 Aye(] wnwixepy jelol onnl
1.E +11
T
A
a
Z
a
2 1.E +10
0
U
W
1.E+09
1.E+08
HAgh Flow Mid -Range Flows
Low Flows
e
e
° e
A e
+ +
+
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percent of days load exceeded
— Allowable Load at Geomean Criterion + Non -wet Weather Event a Wet Weather Event
Figure 7. Load duration curve for station 17531 (AU 0822B_01)
E. coli samples collected within 24 hours of a precipitation event are designated as triangles. Median flows in
each range at this station are: High =14.35 cfs (0.406 cros); Mid -range = 2.38 cfs (o.o67 cros); Low = o.97o
cfs (0.027 ems).
1.E +13
t4gh Flows Mid -Range Flows Low Flows
e
1.E +12
T
N
0 1.E +11
Z
IL
f
u 1.E +10
4i
1.E+09
1.E+08 I I I I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percent of days load exceeded
— Allowable Load at Geomean Criterion + Non -wet Weather Event a Wet Weather Event
Figure 8. Load duration curve for station 17939 (AU 0822B_01)
E. coli samples collected within 24 hours of a precipitation event are designated as triangles. Median flows in
each range at this station are: High = 22.34 cfs (o.632 cros); Mid -range = 3.56 cfs (o.1ol cros); Low = 1.35 cfs
(0.038 cros).
l exas Uommission on Environmental Quality 17 For Public Comment, May 2011
L LOZ AeW `luawwoo opgnd JOJ 9L A!Ienl9 Ielu9wu0Jlnu3 Uo u0issiww00 sexaj
SON + 033 + VTK + V'IM3 = 'I(IML
:uotiunba 2upmoll03 aql 2uisn palulttoluo ajam sot tuuao lo
s paalas
aqi aoI suoiluoollu pool luelnllod ails 'sprepuuis ,flilunb aalum 2uipaaoxa inotlipA Ap al2uis
u ut antaoaa uuo utuaals aql leip luelnllod u jo lunoutu utnwixuut aqi sivasaadaa -IQKI atU
uoile3olld peO-1 jue4nll0d
pool algumollu utnwixuw luloi = 'I(Ivu
:azaqm
,lava. 50.0 = SON
:uotlenba �?upAolloj aui ui passaadxa
st siLIL •IlV tloua �?uualua 2utpuol alguneollu app luaouad S su palndutoo si SON Itoildxa ails,
•paonpaa Xpq2ils si Xpoq aalum goua jo 2uipuol
luelnllod alqumollu ao X4pvduo antlultutissu aql leul si SOW ulim IQLU atli jo loapa lau aU
.!loo •g jo Zuz ooi /NdW ort jo la2lui uuauz oulautoa2 u of salunba still `uotluaaoaa louluoo
and •uoualiso uuauz oulauioa2 aui uutli aamol luawad 5 si luLp spool uualouq aoluoipui
aoj la2aul u 2ull4as Xq SOLI lioildxa uu alutodaoout podw stgi Xq paaanoo s-I(IKL a%L
-SOW u 2uiu2issu .to3 sisuq aqj si `algissod lualxa atll of `i,4umpaoun still jo uoiluotspuunb
•Xlilunb aalum loagu luui sassaooad luluautuoainua xaldutoo atll aoI sai2alwis loaluoo �flilunb
aalum 2up44pads ut asuu Moot lugj fqutulaaoun Xuu aoj lun000u of pau2isap si SOLI aq,L
•(sw3 Mo•o)
slip �e a2 U.1 uaea s ;o z£•£ = moZ '(sLuo bLz-o) s ;o L9'6 = aSuea -P!W :(sulo zog*t) sP 59'£9 = q2ig :aae uoe ;s d �
ui snoop usiPOW •saftru n su paluu2isap aau Juana uoq i0aid L, jo sinoq ft uigp!m papallo0 salduws 1100 •g
(60 8ZZ80 nv) 6lCOZ uoi ;els jol aNno uoileinp peo-I -6 ain6i j
luan3 JayleaM LeM v lu9n3 JayleaM lam -uON + uopelpo ueawoaE) le peol algemollV—
papaeoxe peon step JO IU83J8d
%OOL %06 %08 %OL %09 %09 %04 %0£ %OZ %M %0
v
v v
v
V
sMOU Mot �I_q a6uea -pin smOlj LAH
80 +3'L
60 +3' L
m
OL +3'L o
3
v
z_
L L +3 L n
w
ZL +3'L
EL +3'L
AaaJo OUlnadeJo pue UoUeje pooMU0ll0Z) UI eUaj0ee JoIe3IPuI JO; spe01 Aflea wnwlxeW Jejoj OMj 1
Where:
WLA = wasteload allocation, the amount of pollutant allowed by permitted or
regulated dischargers
LA = load allocation, the amount of pollutant allowed by unregulated sources
FG = loadings associated with future growth from potential permitted facilities
MOS = margin of safety load
As stated in 40 CFR, 130.2(i), TMDLs can be expressed in terms of mass per time, toxicity,
or other appropriate measures. For E. coli, TMDLs are expressed as MPN /day, and
represent the maximum one -day load the stream can assimilate while still attaining the
standards for surface water quality.
Wasteload Allocation
TPDES- permitted wastewater treatment facilities are allocated a daily wasteload (WLAwwrF)
calculated as their full permitted discharge flow rate multiplied by one -half of the instream
geometric mean criterion. One -half of the water quality criterion (63 MPN /ioomL) is used
as the WWTF target to provide instream and downstream load capacity. This is expressed in
the following equation:
WLAwwrF = Criterion /2 * flow (MGD) * conversion factor
Where:
Criterion = 126 MPN /loo mL
Flow (MGD) = full permitted flow
Conversion factor = 37,854,000 loo mL / MGD
As previously discussed, there are currently no permitted wastewater treatment facilities
within the TMDL study area. DFW Airport is the only facility with an individual permit;
however, that permit authorizes the discharge of only storm water during periods of de -icing
activity and will be treated as part of the waste load allocation for TPDES - permitted storm
water discharges (discussed below). The Airport is also covered under the TPDES Phase II
General Permit.
No individual WLAwwrF was calculated for the DFW Airport permit, and the total WLAwwrF
is set to zero. In the event that the permitting process for a new WWTF is initiated in either
watershed, a future growth component has been included in this TMDL that will allow for
the allocation of loads based on an estimate of the future WWTF discharge requirements for
both watersheds.
Additional storm water dischargers represent additional flow that is not accounted for in the
current allocations. In urbanized areas currently regulated by an MS4 permit, development
and /or re- development of land in urbanized areas must implement the control
measures /programs outlined in an approved Storm Water Pollution Prevention Plan
(SWPPP). Although additional flow may occur from development or re- development,
loading of the pollutant of concern should be controlled and /or reduced through the
implementation of best management practices (BMPs) as specified in both the NPDES
permit and the SWPPP.
An iterative, adaptive management approach will be used to address storm water discharges.
This approach encourages the implementation of structural or non - structural controls,
implementation of mechanisms to evaluate the performance of the controls, and finally,
Texas Commission on Environmental Quality 19 For Public Comment, May 2011
6 60Z AeW ';uawwoo oilgnd io3 oz A4ilenC) leluewuainu3 uo uoissiwwOO sexal
auatunu su uugl iaglea `sluauiaambaa auluuts daglo ao sdwq se passaidxa aq Menu aalune
uuols ioj V-IM agl luauialduut lugl slitutl luanlja pasug- ffltlenb aalune `sa2aegasip ialum
uuols Ieialsnpui pue `sa2aegasip aalene uuols uoilanalsuoa `ludiaiunui paleln2ai -SdQdZ
/SHudN ao3 •suoiluaollu peolalsune agl jo suoilduunsse pue sluauiadinbaa agl gline lualsisuoa
suoilipuoa aainbaa Illnn sliuuaad SdQdZ 31.MM atlsauiop `panoaddu uaaq sug'IQW.I, e aiagM
•Ittuad Wean e ao3 paneollu lou aae salnpagas aauutlduuoa
asneaaq skull luanlja uuualui uueluoa lou Mine sluuuad neaN •aauenssi -ai lluuad ;o
alep aql uuo4 sauaX aaagl uugl aa2uol Xue aq lou Xeuu sliuuM luanlja uuiaalui Xuu 3o uoileanp
aU •suoileaolle -IUVU panoidde VdH pue aHDs aq} laauu of faessaaau slituil Iuanlja
luuid agl um o} aapao ui lilunb lunl a i poTu of mull aalluuuad a molle M?M sltunI
uuaaluu asagZ •leneauaa luuuad ao luauupuauuu Iluuad u le sluauiaainbad ffluo- 2uuoliuouu
ao /pue sliuuil luanUja tuaalut gsilqulsa Menu uoissiuuuuoa ao iolaa iip antinaaxa ails,
•'IQY�i.L
agl gline aauuilduuoa alualsuouiap Mine suoilae 2uilliuuad Ile `ss3lpa03g •uuld Iuauua2uuuw
f4llunb aaleM s,alels aql of alupdn uu jo uoiluauda id anlonui Xetu gatgne `uoilau
2uilliuuaad SdQdZ, aluaudas e tin paluauialduu jtlun �uupuiq -uou aae `I L'm uuols ao� svqM
agl su Mane su `sV-IM IunplAlpm agl `adojaaaU •paldope si 'I(ImL sigl ia4e sV"IM Iunpinipui
ui s32ue113 luuddune tutu saauulsuunaaia pue Xlilunb aalune panoaduui jo leo2 agl 2utnaug3u
jo sueauu algiseaj XIleatugaal ao Iuattuouoaa aaouu u aq Muni aaagl `aananeoH •ssaaoad
leneauad liuuaad ouilnoa agl 2uunp paluatualdun aq Min,+ sluauuaambaa liuuad aqZ •6.6i£§
ui palsll aau pue salua neoll palliuuad uo pasug aae sluatuaainbaa 2uuoliuoW --JUK , agl
uo pasuq luuul luanlja ue pau2isse aq Mu" snd luat gas 'I(IWI agl of 2ui2degasip s31 MM
600z
19z aagwanoN anulaajja auueaag gaigne 61£ iajdugD apoD anulualsiuuuipv suxal
o£ 30 luauupuauiu agl Xq padinbaa se suolleliuuil luanUja io /puu sluauuaii i 2uuoliuouu
su ssaaoad 2ui }liuuad agl g2noagl sVIM IunpinipUl agl luawaldiul of spualui OaD j, aU
sltuuad aalene uuols
jo uoilaips�znf aapun uaau a2uum jo uoiadodo id leuoilaedj _ dmsdQ3
,lava . 50.0 = puol fflajus jo ui2auui = SOW
saililtauj papluuad letlualod uuod3 spool glneoa2 aimnj jo wins = Od3
o = spuol 31.MM Ile 3o tuns = �u"v'IM3
peol algeneolle uununxeuu lulol = rIuva
speol aalene uuols popluuad lle jo nuns = Msv -IM3
:aaagm
dmsvcu . (SOLI — J33 — -,""v im:K — 'I(IKL) _ msv IM3
:sneolloj se palelnalua si pue saadnos aalene uuols
(palltuuad ao) paluln2aa uwoaj speol jo tuns agl si Msv i
AN
`snU •uoulnqualuoa aalune uuols
palliuuad agl su msvIM agl ut paluaolie aq pinogs leg} pool jjouna Iledano alp jo lunouie
agl aluuulsa of pasn su (dmsVQ3) suoileln2ai liuuad VSW gllm Alduuoa of padmbaa �flulua
ue 3o uoiplpsunf agl aapun si lugl pagsaalune gaua Io a2uluaaaad aql •2uipeol aalune uuols jo
ffltligetaen agl pue `jjound Mejuiud 2upulnuuls gline paluiaosse sapixalduuoa agl `algelrene elep
;o lunouue paliutil agl of anp s I(IKL asagl jo luatudolanap agl ui pasn sere wade asagl ioj
H-IM agl 2uputui4sa ioj gaeoadde paidilduns v •(MSv-LM) sa2dug3sup ialune uuols paplumd
doh uopuaoUu ue apnlaui oslu Isnui suoulelnalea AIM agl `ado�adag� saaanos luuod palliuuad
paaapisuoa aau seaau uoilanalsuoa pue `luulsnpui `tSW uuoaj sa2dugasip aalene uuols
•Xlilunb aalune laaload of
f essaaau su (sdWq aidiaads ao slodluoa lua2uLils adoui 1•2•a) sluauilsnCpe aVtu of aoueneolle
MaaaO auinadejE:) pue Uoueag poomuouuoo ui eua;oeg aoleoipul ao} speo-1 Al!ea wnwixeW je;ol omi
Two Total Maximum Daily Loads for Indicator Bacteria in Cottonwood Branch and Grapevine Creek
effluent limits (November 12, 2010, memorandum from EPA relating to establishing WLAs
for storm water sources). The EPA memo states that:
"The CWA provides that storm water permits for MS4 discharges shall
contain controls to reduce the discharge of pollutants to the "maximum
extent practicable" and such other provisions as the Administrator or the
State determines appropriate for the control of such pollutants. CWA section
402(p)(3)(8)(iii ). Under this provision, the NPDES permitting authority has
the discretion to include requirements for reducing pollutants in storm water
discharges as necessary for compliance with water quality standards.
Defenders of Wildlife v. Browner, 191 F.3d 1159,1166 (9th Cir.1999)•
The permitting authority's decision as to how to express the WQBEL(s),
either as numeric effluent limitations or BMPs, including BMPs
accompanied by numeric benchmarks, should be based on an analysis of the
specific facts and circumstances surrounding the permit, and /or the
underlying WLA, including the nature of the storm water discharge, available
data, modeling results or other relevant information. As discussed in the
2002 memorandum, the permit's administrative record needs to provide an
adequate demonstration that, where a BMP -based approach to permit
limitations is selected, the BMPs required by the permit will be sufficient to
implement applicable WLAs. Improved knowledge of BMP effectiveness
gained since 2002 should be reflected in the demonstration and supporting
rationale that implementation of the BMPs will attain water quality
standards and WLAs."
A November 22, 2002, memorandum from EPA relating to establishing WLAs for storm
water sources states that:
"...the Interim Permitting Approach Policy recognizes the need for an
iterative approach to control pollutants in storm water
discharges ... [s]pecifically, the policy anticipates that a suite of BMPs will be
used in the initial rounds of permits and that these BMPs will be tailored in
subsequent rounds."
Using this iterative adaptive approach to the maximum extent practicable is appropriate to
address the storm water component of this TMDL.
This TMDL is, by definition, the total of the sum of the WLA, the sum of the LA, and the
MOS. Changes to individual WLAs may be necessary in the future in order to accommodate
changing conditions within the watershed. These changes to individual WLAs do not
ordinarily require a revision of the TMDL document; instead, changes will be made through
updates to the TCEQ's WQMP. Any future changes to effluent limitations will be addressed
through the permitting process and by updating the WQMP.
Load Allocation
The LA is the sum of loads from unregulated sources. Nonpoint sources within the
Cottonwood Branch and Grapevine Creek watersheds include unregulated storm water
runoff and direct deposition from warm- blooded animals. The LA term is calculated as:
Texas Commission on Environmental Quality 21 For Public Comment, May 2011
6lOZ AeW ';uawwoo oggnd JOJ ZZ f4ilenC) lelu9wuaUu3 uo uoissiwwoO sexal
goua jo a2uluaoaad uo pasuq pauiuu lop uagl sure pagsaalune goua jo uoilulndod aill `loialsip
goea ui notingia }sip uana 2utuznssV o£oz puu Sooz ao3 ulup uopulndod puu sloialsip
uoilulndod OOD.IDN aql puu pagsaalune goua jo salg adults SI0 agl 2uisn paluunlsa aaane
)Iaaao auinadua0 puu gouuag pooneuolloD jo spagsaalune aailua aql jo uoilulndod agl `IxaN
•podgy Lot
3o neoU aalunealsune u 2uind uoilulndod a3Luas sli Xq a2augosip Xliop lunuuu Sooz 3ZMM
IuuoiJ a2l lealuaD VZ aql 2uipinip Xq pautuzaalap uagl sure uliduo aad neog aaluneals'em
aqZ ppIsIp goua uigline uoi }ngia ;sip uoilulndod uana �utuznssu aaglanj `uaau a3Luas
agl ui lo?alsip goua jo a2uluaoaad aql puu saluuxpsa loin }sip uoilulndod OODiLz)N Sooz aql uo
pasuq paluunlsa sure uaau aoLuas AIMM leuol ald lualuaD VHJL agl utgline uoRulndod agZ
•(g2gu600z `OODJLDN) lo?alsip uoilulndod Kq saluwnlsa uoilulndod OODZDN puu `sloialsip
uopulndod OOo.L7N puu uaau a;)Luas 3ZMM agl jo saaXul SIO alquliunu 2uisn pauiuu3jap
sere Sooz auaX agl io3 3ZMM V-dZ agl jo uoilulndod wLuas aq} IxaN auaX lugl aoj (600a
`Vdg) alisgane uzals fs aouugduzoo Iluuad Vdg agl woq pauiulgo (sdW(I) slaodaa 2uuoltuow
a2aug3sip sli uo paseq 3JMM luuoj2ag lualuaD VdZ aql ao3 a %ugosrp Xliup Auaanu Sooz
auaX aql auiuualap o} sere uaVI gouoaddu aqZ •pagsaalune goma ioj uosaad sad uolluaaua2
aalunealsune a2uaanu auiuualap Xltpuaa o} algisua ui si li `.3j mm iuuoi2ag IualuaD V-dj agl ao3
uaau anuas uoiloalloo aalunealsune aa2aul gonuz agl uigline ail spagsaalune paaiudun gloq aouis
-(It So luaui2aS) aanig
,,liuiaZ )1.103 IsaM aamM agl uo paluool 31,MM Iuuop -d Iualuao V-dZ agl of spagsaalune
gloq jo Ino papodsuual si )IaaaD auinadua0 puu gouuag pooneuolloZ) utgline paluaau32
aalunealsuM gzz8o puu �zzgo sluaui2aS olui a2augosip s31,MM palltuzaad ou `�flluaaanZ)
•(pod2) Xup aad ulldm aad suolle2 ao Xup aad uosaad aad paluaaua2 aalunealsune jo lunouxu aql
jo aluunlsa up puu suotloaload o£oz auaX of saluunlsa Sooz auax T1104 asuaaoui uollulndod
aql uo pasuq suopulnoluo ZQKI agl ui papnloui sere glneoa2 aanlnj aoj uoisinoad u `snV
gloq ui in000 Xuua sa2augosip ADAM wzoaj snoop. neau Will fIiligugoad aqlioj lun000u oZ
gjmojE) aanln=l
•,4biiod
uotlupuaapiluu s,suxaZ o} uuojuoo puu sasn luiagauaq 2uilsixa jo uoiloaload ui Ilnsaa Ul m
luawnoop sigj ui sZQya aqZ •flilunb aalune apua�ap Mine �Slinilou aq} 3i auiwIaalap of suoilou
pasodoad lunpintpui 2uineainaa ao3 ssaooad u gsilqulsa saanpaooad uotlupua2apiluu `Iuaaua2
uI •sa2augosip Iuulnllod aoanos lutoduou puu luiod gloq of satlddu �fogod uoilupua2apiluu
aU •asn 2ullsixa uu jo u0pupuBap of aingialuoo ao asnua phone lugl 2uipuol
III asuaaoui uu sligigoad spaupuuls agl ui Xoiiod uotlupua�aptluu paaap -aaagl aql `uoilrppu uI
sow+ 033 + VI + ",Sv IM3 + crane VIM3 = 'I(Iwl
:V-1 puu V-lM3o sluauodwoo aql moils of popuudxa aq sngl uuo uollunba -I(ImL alts,
-iuv I .* So•o = puol'flajus jo ut2auuz = sow
saililioe3 Pa14iuuad legualod woaj spool glneoB aanlnl3o wins = 033
spool aalune uuols polliuuad Iiu jo wins = nest" IM3
o = spuol 3J,MM Ile 3o wins = ALIAM 'IM3
pool alquneollu wnu Draw Ielol = 'IQva
fld aql 2uualua saoanos palulawun uwoaj pool alquneoliu = yI
:aaagm
sow — 033 — 'IUKI = VII
population district in each watershed, the 2005 and 2030 population estimates for each
district, and summing the computed populations by watershed. With this information, the
future growth (FG) of each watershed is calculated as follows:
Where:
FG = criterion /2 * Flow2005 * (Pop3o - Pop05)
Criterion = 126 MPN /loo mL
Flow2005 =107 gallons per capita per day (gpcd) based on the average daily
discharge of TRA W WTF from year 2005 DMR data divided by year
2005 TRA WWTF wastewater collection area population estimate
Pop3o = estimated watershed population for year 2030
POP 05 = estimated watershed population for year 2005
Conversion factor =10-6 MGD /gpcd * 37,854,000 loo mL / MGD =
37.8541oomL /gpcd
Additional storm water dischargers represent additional flow that is not accounted for in the
current allocations. Changes in MS4 jurisdiction or additional development associated with
population increases in the watershed can be accommodated by shifting allotments between
the WLA and the LA. This can be done without the need to reserve future- capacity WLAs for
storm water. In non - urbanized areas, growth can be accommodated by shifting loads
between the LA and the WLA (for storm water).
TMDL Calculations
The TMDL was calculated based on the median flow in the o -10 percentile range (high flow
regime) from the LDC developed for the most downstream station within each AU, which is
station 17166 in AU o822A_02 and station 20311 in AU o822B_o1(Figure 1). Each term in
the TMDL equation was determined based on the equations provided previously. Table 5
summarizes the calculation of the TMDL for each AU. Table 6 summarizes the computation
of future growth for the combined AUs.
The entire drainage area of AU o822A 02 is located within jurisdictional areas regulated by
storm water permits, and 84.8% of the drainage area of AU o822B_o1 is located within the
jurisdictional areas regulated by storm water permits (2,605 ha out of 3,073 ha are under
storm water permit regulation). Table 7 summarizes the computation of term WLAsw.
Since the entire drainage of AU 0822A_02 is within the jurisdictional areas regulated by
storm water permits, the LA associated with this AU is zero. For AU o822B_01, 468 ha or
15.2% of its drainage area is not regulated by storm water permits, and LA was computed
from the value of terms in Table 7 (see Table 8).
Table 9 summarizes the TMDL calculations for AUs o822A 02 and o822B_o1. The final
TMDL allocations needed to comply with the requirements of 4o CFR 130.7 are presented in
Table 1o. The final TMDL allocations include the future growth component designated as
WLAwwrF while allocations to permitted MS4 entities are designated as WLAsw. The
allocations are based on the current geometric mean criterion for E. coli in freshwater of 126
MPN /loo mL, with the exception of the Future Growth component. The Future Growth
component is based on 1/2 the current geometric mean criterion (63 MPN /loo mL) to
account to provide instream and downstream capacity.
In the event that the criteria change due to future revisions in the state's surface water
quality standards, Appendix A provides guidance for recalculating the allocations in Table
Texas Commission on Environmental Quality 23 vor vumic GommenL, rviay —1
L LOZ AeIN '}uewwoo oilgnd Jod
bZ AlllenC) leluawualnu3 uo uolsslwwoo sexal
17£'8Z
IO OZZ80
0
ZO VZZ80
(ABP /NdW UO11118)
V-1
nv
( LO 8zz90 nv) �99JO auinadejE)
PUe (zO vzzgo nv) 4ouej8 poomuouoo jo; uol;elndwoo jajem wiols paleln69a -uoN g elgel
09'L91
8178'0
18'6
917'0
00'0
ZZ'961
to —OZZ80
L617 £
000'1
98'1
1Z'0
00'0
170'L£
ZO `dZZ80
msd-1M
dmsvQ j
sow
41moig ainln j
mm1/lM
laWl
nv
(SLIP /NdW u01II 18 se possaadxa speol IIV)
(LO ezz90 nv) N99JO aulnadeaE)
PUe (zO vzzgo nv) gouej8 poomuouoo jol uollelndwoo jajem wiols paleln698 ,L algel
%9 jo SOJAZ so; uoi;onpai a sapnloui glmoB ainlnd ..
17917'
961'0
9l8`l
ZZ9`ZZ
L08`OZ
amnadwq
EIZZ80
Z1Z'
680'0
6Z8
8Z£`OZ
6617`61
pumEl
dZZ80
luawoes
PooMuouoD
. (AeP /NdW
(aoW)
OSOZ o;
uollelndod
uollelndod
aweN
luawfiaS
u0!II!8)
uollonpo�d
SOOZ esee�oul
0£OZ
SOOZ
weailS
4lmoj0 aininj
JalemelseM
uollelndod
Ieuo!3!PP1l
N99JO aulnadejE) pue gouej8 poonnuouoo jol suolle;ndwoo gymoaE) aanlnd *9 algel
ZZ'961
(sia 99'£9) swo Z08,1
11 £OZ
N33JD aulnadulD
10 OZZ80
170'L£
(sla IO'ZI) swa Z017£'0
991L1
g3ue18 PooMuolloD
ZO `dZZ80
(AeP /NdW uoIIIIS)
"IOWl
awl6aa mold
46IH ;o enleq ue1PaW
uollelS
aweN weaJlS
luawoes
N99JO aulnadejE) pue gouej8 poomuouoo jo; uollelnoleo -1allNl ;o luewwnS .5 elgel
•ijoa •g aoj uoraalpo fq! jenb aajum neau jupualod
Auu uo pasuq suoiltDolle peol lue}nUod pue s7UKL mau jo uol�iulnolm mollu `z -V pue t -V
sam2IA 1pYA 2uole 'papinoad suoq;enba aiU •tjoa •g aoj eualuo Xignb .tjvm leoppagjoclxq jo
saquznu >L, o} uopelaa ui a2mgo suoi�eoolle peol }uulnllod pue Isuoi P,lnaleo Z(IWI `,�}iaL'dm
aAIJU WISSe MOO alea}suouzap of padolanap aaam V xlpuaddV jo z -V pue t -V sawajA •ol<
Table 9. TMDL allocation summary for Cottonwood Branch and Grapevine Creek
(all units in Billion MPN per day)
AU
Stream Name
TMDL'
WLA,,,,F'
WLAgW`
LA°
MOS'
Future
Growth'
0822A02
Cottonwood Branch
37.04
0.00
34.97
0
1.85
0.21
0822B_01
Grapevine Creek
196.22
0.00
157.60
28.34
9.81
0.46
a TMDL = Median flow (high flow regime) * 126 MPN /loo mL * Conversion Factor; where the
Conversion Factor = 8.64E +o8 loo mL /m3 * seconds /day; Median Flow from Table 5
b No WWTF discharges into AUs o822A_02 and o822B_oi
` WLAsw = (TMDL - WLAwwTF - FG - MOS) * FDAswF; (see Table 7 for equation values)
d LA = TMDL - WLAwwTF - MOS - WLAsw - FG; because the entire drainage area of o822A_02 is
covered by MS4 permits its LA = o.000
e MOS = 0.05 * TMDL
f Future Growth = Criterion /2 (63 MPN /day) *Flowzoos * (Pop30 — Pop05) * Conversion Factor; where
FlOW2005 = 107 gpcd, Pop30 is the estimated population within the watershed for year 203o and
POP05 is the estimated population within the watershed for year 2005; and Conversion Factor =
37.854100 ml /gpcd; (see Table 6 for population estimates)
Table 10. Final TMDL allocations for Cottonwood Branch (AU 0822A_02) and Grapevine Creek
(AU 0822_01)
(all units in Billion MPN per day)
AU
Stream Name
TMDL
WLAwwTE*
WLAsw
LA
MOs
0822A02
Grapevine Creek
37.04
0.21
34.97
0
1.85
08221_01
Cottonwood Branch
196.22
0.46
157.60
28.34
9.81
* WLAwwTF = WLAwwTF + Future Growth
Public Participation
The TCEQ maintains an inclusive public participation process. From the inception of the
investigation, the project team sought to ensure that stakeholders were informed and
involved. Communication and comments from the stakeholders in the watershed strengthen
TMDL projects and their implementation.
TCEQ and TIAER are jointly providing coordination for public participation in this project.
A series of public meetings have been conducted over recent years to keep the public aware
of the TMDL process and to engage public participation. Public meetings were held at the
Valley Ranch Library in Irving on June 10, 2008, September 24, 20og, and April 22, 2010.
The meetings introduced the TMDL process, identified the impaired AUs and reason for the
impairment, reviewed historical data, described potential sources of bacteria within the
watershed, and presented the TMDL allocations. In addition, the meetings gave TCEQ the
opportunity to solicit input from all interested parties within the study area. Information on
past and future meetings for the Cottonwood Branch and Grapevine Creek TMDLs can be
found on the TCEQ website at: <www.tceq.state.tx.us /implementation /water /tmdl/
66_cottongrape_bacteria.html >.
i exas Commission on Environmental Quality 25 For Public Comment, May 2011
6 60Z AeW ';uawwoo oilgnd god 9Z f4ilenC) IMu8wuaLnu3 uo uoissiwwOO sexal
•Iuauutudun up of 2utingtaluoo Aitiva palulaaa u Jo uotiou anuloaaaoo
aaunbaa of Xpauuaa luauuaoaojua up 3o uotlulmso pup `siutulduuoo oggnd of l000load asuodsaa
U ao Xouanbaa3 uopoadsui up jo luauuisn[pu `spuaal 2utpuol Ajtaan puu alunlpna oI f4llunb
a2apgostp ivanlpa jo 2utlaodaa pup 2utaoltuouu juuotluppu apnlout Xuuu sai2aluals eons
,faussaoau uaigm uuld -I up ui pagtivapt air Itl$tsaano pup aouptldmoo amundo of sai2alualS
•sZQya suxaZ aoj suuld -I anoaddU
lou saop Vdg ssaa2oad 3o uotlunluna oipouad ioj upld u pup `saanseatu Iuauua2muuu
Ino 2ut�.uuo ioj algisuodsaz suoilezmajo aqI f4lluapt oslu suuld -I •awil alquuoseaa
U uugllm s'I(IKL aulnoulapd jo sV j pup svim aql Iuauualdiuu of saansuaw Iuauua2utuuuu
,�iulunlon pup 4Liojujn2ai agi jo alnpaulos pup uoliduosap paptulap u sapnlout uull -I and
UBld -1 uB 10 SIUGW013 AG),i
•ssaa2oad jo suotlunluna ui pagtluapt spaau loallaa of faussaoau su pnidupu aq
UFA suuld-I - Aauatou a aspaaouu of paijlPouu aq pinogs saoanos 2uotuu 2uipuol jo uoilnqulsip
luui2uo aqi lugs molts Xuuu pup 12up in000 si ssaa2oad iaglz)gm utepamu spoglauu
uotlpivauualduut jo ssauanuloajja aql to suopunluna paluadaa `otpou d paluawalduut aq Illm
suoulonpaa Iuulnllod anatgou of saritntlou XaujunjoA pup Ximulaw f uussaoau ails Iugl saanssu
Xlquuosuaa ulopoaddu antidupu sags •sluo2 luluauuuoainua anaiulou of spoglauu 3o uoiltppu ao
luauuaugaa aoj smollu Iut l gouoaddu Iuauua2uuuuu antidupu up asn srlQyu suxaZ aoj supld -I
•uoussiuutuoa aqi Sq paldopu s-l(lp L Ile 3o uoppivauualdtuu
2uliaoddns of pallluutuoo si agZ)Z agjL •uuld -I up jo asn s,aluls aql Xq paansse Xlquuospaa
aau samnos lutoduou pup Iutod qloq tuoaj srlaWjL ui spuol luuinllod 2utnatgou ioj sai2alwlS
uuid -I paldopu up glyA
aouupa000p ui saa2apgasip aalum uuaois 2utioajju suoistnaa optoads aaglo Iuatualduut so `uuid
uo M a u mbaa `iutaad aalun
. l t
uuols u astnaa Ig2utu ORDL aqI `aaglug alupdn uoulpiutuul ivanlpa up q2noagl luuuad aaium
uuols SHQdZ ogtoads u of algpoulddu sluamaainbaa uotlpluawalduui ogtoads Xjpuapt lou
Illm bHoi aql `Ituuzad VSW up ui pagstlquisa an saotlopad Bons uagm •(saoanos aalum uuaols
ioj sV"IM I(Iya $utgstIquisa of 2utlulai VdH uuoa3 uunpupaouuauu `zooz `za aaquuanoN
aas) alglsuajut am suollultuutl Iuanjpa ouauunu aaagm `salsa Ipaapaj Xq p Mollu sp `suoilpittutl
luanlpa aoj alnitlsgns u aap sdWq •sdWg gstlqulsa XUruuou Iltm bgoi aql `sitttuad pSyQ ao3
•sltuuad a2augosjp aalumalsum SHQds ogtoads
.ioj fbussaoau suopull -L utl Iuanlpa paspq- Xltlpnb -aalum paambaa gstlquisa of salupdn dWom
Xjl:pao pup asodoad ti?m baDi atp `(uuld -I) uuld uolluluauualdwl pup rlQyU aqi uo pasug
•alupdn dWOM
palutoosse aqi jo uotlpogtiaao s,aluls aqi si rlQyU u jo uotldom uoissiuuuuoD •((0)9•o£t -dAD
oV suoululn2aa luaapaj ut pagtluapt su `sivatuala uuld pasnooj Xlluagtoads aaotu `nlkau giyA
palupdn XUunuiluoo su IW?)M aqZ •suxas inog2noagl sasn paluu2isap aaoisaa ao ululututu
pup ,4!lunb aalum a2mutu of sVoja s,aluis aql sioaatp pup saluutpa000 dWOM s,a 'AD.L aul.L
•dyVaM ,sexaZ of alupdn up jo luauuala ueld u si rlQyL qma `sivatuaamboa luaapaj
gllm lualstsuoo •panatgou aq Iltne laodaa rlQyL si
gl ut suoulpoollp puolalspm lugl aoupansse
alquuosuaa saptnoad SH(I(U g2noatp srl(IyL gltm lualsisuoo sinuaad jo aouunssi aq 1,
� OWZ) auinadeaE) pue 14ouea8 poonnuouoZ) ui eua10e9 aole3lpuj JOI speo-j Al!ea wnwixeW lejoi omi
The TCEQ works with stakeholders and interested governmental agencies to develop and
support I -Plans and track their progress. Work on the I -Plan begins during development of
TMDLs, but the plan is not completed until sometime after the EPA approves the TMDLs.
The cooperation required to develop an I -Plan for approval by the commission becomes a
cornerstone for the shared responsibility necessary for carrying out the plan.
Ultimately, the I -Plan will identify the commitments and requirements to be implemented
through specific permit actions and other means. For these reasons, the I -Plan that is
adopted may not approximate the predicted loadings identified category -by- category in the
TMDL and its underlying assessment. However, with certain exceptions, the I -Plan must
nonetheless meet the overall loading goal established by the EPA - approved TMDL.
NCTCOG is working with the TCEQ to lead development of the I -Plan. Through the
stakeholder group led by the NCI'COG, the resources and expertise of the local organizations
and individuals will be brought together to set priorities, provide flexibility, and consider
appropriate social and economic factors.
References
AVMA. 2009. U.S. Pet Ownership -2007.
<www.avma.org/ reference /marketstats /ownership.asp >. Accessed 28 October 2009.
Cleland, B. 2003. TMDL Development from the "Bottom Up" —Part III: Duration Curves and
Wet - Weather Assessments. America's Clean Water Foundation, Washington, DC.
EPA. 1991. Guidance for Water Quality -Based Decisions: The TMDL Process.
<www.epa.gov /OWOW /tmdl /decisions / >. Accessed 28 October 2009.
EPA. 2002. Memorandum: Establishing Total Maximum Daily Load (TMDL) Wasteload
Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based
on Those WLAs. November 22, 2002 (Robert H. Wayland, III to Water Division
Directors).
EPA. 2oo6. Memorandum: Clarification Regarding "Phased" Total Maximum Daily Loads.
August 2, 2oo6 (Benita Best -Wong to Water Division Directors).
EPA 2009. (United States Environmental Protection Agency). 2009.
<www.epa.gov /enviro /html /pcs /adhoc.html> Accessed December 8, 2009.
Millican, J. and L. Hauck. 201o. Allocation Support Document For Two Total Maximum
Daily Loads for Bacteria in Cottonwood Branch and Grapevine Creek. Prepared for:
Texas Commission on Environmental Quality, Prepared by: Texas Institute for Applied
Environmental Research, Tarleton State University, Stephenville, TX.
Millican, J. and L. Hauck. 2010. Technical Support Document For Bacteria TMDLs
Segments o822A Cottonwood Branch and o822B Grapevine Creek. Prepared for:
Texas Commission on Environmental Quality, Prepared by: Texas Institute for Applied
Environmental Research, Tarleton State University, Stephenville, TX.
NDEP (Nevada Division of Environmental Protection). 2003. Load duration curve
methodology for assessment and TMDL development. <ndep.nv.gov /bwqp/
loadcurv.pdf >. Accessed o8 December 2009.
i exas Uommission on Environmental Quality 27 For Public Comment, May 2011
l 60Z AeW '}uawwoo oilgnd Jo=l gZ fq!lenC) Iqu9wua'nu3 uo uoissiwwOO sexal
•oioz 19T kiurugaq passaoov <Jpd
• p£ o£— oioz/ ibAgoi/ aalum/ sdouout/ aouutidutoo/ oggnd /slassu /sn•xi•alels•baol-AVA M>
•(oioz `9,faenaga3) Isi l (p)£o£ suxaJ, oioz IJPJQ •otoz •baoJ.
•600z iagoioO
gz passaooV •< iutlg• gotbmi/ ibnqgo/ uiep/, fitjunb /.talum /2upoituout /aouutidutoo
/sn•xi•aluis•baoi•nv m> (p)£o£ pup ftoluanul Xitiunb aaluM suxas ggooz b��i
•600z .zagopo ga passaood • <sluautnoop #puliq- 2muVwbMs
/ ulup/, fltienb/ aaium/ 2upoiiuout/ aouutidutoo /sn•xi•aluis•baoi•mmm>
(800z
16T tl3jLw)
sexas ui fIttunb aapM aoujanS Vuypodag pup Vutssassd ioj aouupinO goon •egooz bHDi
•600z .tagoloO gz passaoov •<iutiq•000z spaupuuls bM
/spaupuuls /luauzssasse bm/ Xlt tunb—a alL, m/ Vutii tuuad /sn•xl•alt?ls•baol•mmm>
•Lo£ Z)VZ o£ `aiupdn 000z `spat?puujS ,,litunb ialuM aouj tnS suxaZ •000z bRDJ.
'(JW `fl?Z) llootgR `uotioalotd pagszaluM aoj ialuao -spa
`pueitoH ?I•H pup aaiangoS g Z `uotloalotd pagsaalt?M Jo aotloutd ags uI •sXumglud
pup `sooinoS `suoputivaouoD :spagsialuM uugan put' sagoaoilN `.tajangoS
£ooz ftunuer iunuuW uopuutuzgg pup uo�ioalaQ aVaugosiQ
IID!Uj •£ooz •(uotsstutuzoo toziuoD uotiniiod .1aluM alelsaalul pueiVuH maN) DDdMIHN
•600z Xlnr 6z
passaooV •< antlutat?up= uz /pyq /eoV-uLou•gts•m mm> •600z (aotntaS aatPPOM p?uopt'N) SMN
•600z .taquzanoN gi passaoov •< /asnogVupuaio /uzoo•sduuim p-mmm>
asnoq�uttuaj� uleQ SI`J 'g600z (sluauzuaanoO3o pounoZ) suxaZ Iuaivao glaoN) OODJDN
600z `9i iagopo passaoDV
•< dse• ist?3ato3/ sotgdu jVoutap /sp /Vto•Vo3l3u•mmm> o£oz lsToaao3 otgduiVowa(I
suxaZ iutluaD q:poN •e600z (sluauzu.tanof) jo iiounoo suxas ieiluaD q:poN) ` oDiaN
Appendix A.
Equations for Calculating TMDL Allocations for
Changed Contact Recreation Standard
VAa� l,V[IIfIII55IUn on tnwronmentai Uuality 29 For Public Comment, May 2011
i ro Aew ivawwo7 olgnd and
0£ Alpena lelu9wuatnu3 uo u0issiww03 sexal
t%ajus jO U12JEW = soli
piupuu }S uoileanag }aeIu03 pasina-d = PIS
((19W) 92auil3sip 3J.MM paIltumad ainin3 tutlualod = qlmOaD aanInA
palum uLlols pa:giuuad -uou) uopmollu PuO7 = Yl
uotleooliu pool a2.zugoslp 31.MM pa:atuuad admnl lupuaiod = A' AWIM
palum uuo }s pagtumad) uoppollu pool alsuM = MsVqM
:aaaqm
,iuv L.50'0 = sow
o =V-1
aztz'o — PIS , z6Lz'0 = msV'IM
zziz'o = (90'0 — z) * £g JOIDU3 uOISIanuOD , loaf) aanln3 = ADAM " IM
PIS , 6£6z 'o = 'I(IVU
SOIL + V-1 + MsvqM + Aj"vgM = ,I(Iv L
:zo �zzgo nd sO� soot }uaollu pue ZQy�, mau 2ui }ulnalea joj suotlenba
eua}�ao
Al!lenb jaleM Io uoi;oun; a se z `dzz8o nv `uoUeJB Poomuo:400 col speo-i uoileoolly * � -y aanbi j
OOZ' l
MM
/SHIM SOW- IOWl- epoluo 0
OFnL
tft
til
(1W00NNdW) euejuo
009 004
0£9
0
04-
90Z 9Z6
0
04
COE
09 r
0
m
a
OZl
0
to
09l
Z
a
ON
ObZ
O9Z
OZ£
1,81
1,61
1,4(
1,2(
�a
1,0(
z
a.
8(
0
0
6(
J
4(
2C
0
-200
0
400 800 1,200
Criteria (MPN /100n -L)
A Criteria—TMDL— MOS— LA —WLAsw WLAwwtf
Figure A -2. Allocation Loads for Grapevine Creek, AU 0822B_01, as a function of water quality
criteria
Equations for calculating new TMDL and allocations for AU o822B o1:
TMDL = WLAwwrF + WLAsw + LA + MOS
TMDL = 1.5573 * Std
WLAwwrF = Future Growth * Conversion Factor * 63 = 0.4643
WLASW = 1.2540 * Std — 0.3935
LA = 0.2255 * Std — 0.07o8
MOS = 0.05 * TMDL
Where:
WLAwwn, = Potential future permitted WWTF discharge load allocation
WI.AS,.,, = Waste load allocation (permitted storm water)
LA = Load allocation (non - permitted storm water)
Future Growth = Potential future permitted WWTF discharge (MGD)
Std = Revised Contact Recreation Standard
MOS = Margin of Safety
i exas Commission on Environmental Quality 31 For Public Comment, May 2011