Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
WA9302-SP 950809
SHIMEK, JACOBS & FINKLEA CONSULTING ENGINEERS DALLAS, TEXAS Natgun Co ration Eleven T Road 292, - Attention: Robert Barbarisi, Jr. Date: September 21, 1995 Re: City of Coppell Village Parkway Ground Storage Res. No. 2 We are transmitting herewith 4 copies of the submittal data furnished by you. These copies have been reviewed and marked as follows: Submittal No. No. of Copies 2C 4 2C 4 2C 4 2C 4 2C 4 Dwg. Description Revised Natgun Calculations xx Rev. Natgun Drawings Sheet 6 of 77 Rev. Natgun Drawings Sheet 38 of 77 Rev. Natgun Drawings Sheet 39 of 77 Revised Natgrin drawings xx Explanation No Make Revise Submit Exceptions Corrections and Specified Taken Rejected Noted Resubmit Items xx XX XX XX Remarks: Submittal No. 2B was compiled into Submittal No. 2C. Three sheets in the final drawings need corrections. The remaining sheets were marked as no exception taken. We have not received the flap valve drawings that were missing in Submittal No. 3. As, a reminder, the dome hatch submitted (Submittal No. 9) was rejected. We have not received y . s, P.E. Checking of shop drawings by Shimek, Jacobs & Finklea is only for general conformance with the design concept of the project and general compliance with the information given in the contract documents. Any action shown is subject to the requirements of the plans and specifications. Contractor is responsible for: dimensions which shall be contimed and correlated at the job site; fabrication processes and techniques of construction; coordination of his work wifla that of all other trades; and performing his work in a safe and satisfactory manner. I;IN E~tablished 1929 PRECAST PRESTRESSED PREFERRED Natgun Corporation Precast Concrete Tanks Eleven Teal Road Wakefield, MA 01880-1292 Telephone 617-246-1133 Fax 617-245-3279 6.0 MG WATER STORAGE TANK COPPELL, TEXAS The following design drawings (Sheets 1-77) and design calculations (Sheets 1-47) are in conformance with the contract specifications and for an AWWA D-110 Type III tank (Precast, Prestressed Wire-Wrapped Concrete Circular Tank With Steel Diaphragm and Clear Span Dome Roof). Salvatore Marques, P.E. Chief Engineer (Texas License//67073) SOUTaWEST OVHCE: Suite 811, 8111 Preston Road, Dallas, TX 75225-6307, Telephone 214-368-3306 MmwEsT OmcE: Suite 211, 2610 Sheridan Road, Zion, IL 60099-2671, Telephone 708-872-8806 Mto-A'rLANT~c Omen: Suite 100, 3650 Winding Way, Newtown Square, PA 19073, Telephone 610-353-8315 [] REJECTEDTION TAKEN [] MAKE CORRECTIONS NOTED [] REVISE AND RESUBMIT [] SUBMIT SPECIFIED ITEM Checking is only for general conformance with the design concept of the Project and general compliance with the information given in the contract documents. Any acticOn shown is subject to the requirements of the plans and specifications. Contractor is responsible for: dimensions which shall be corrfirmed and correlated at the lot> site; fabrication Processes and techniques of construction, co- ordination of his work with that of all o~'her trades and Performing his work in a safe and satisfactory manner. SHIME. K, JACOBS & FINKLEA CONSULTING ENGINEERSDALLAS, TEXAS Sheet 1 of 47 NAT~UN CORPORATION Design Engineers and Contractors 11 Teal Road Wakefield, MA 01880-1292 Tel. 617-246-1133 Sheet GI Job No. 95Cll Project COPPELL, TX Date: 7/20195 Run By: MJH PRESTRESSED TANK DESIGN-PRECAST WALL. SYSTEM ******************************************* Design Capacity 6 M.G. General Dimensions: Inside Diameter, Liquid Depth, Capacity Check: Volume = PIxDxDxHx7.48/4= 6098280 D= 185 ft. Ht= 30.33 ft. gal. SPECIFICATIONS: Concrete-Precast Wall Panel -Cast-in-Place Wall Slots -Precast Dome Panels -Cover Over Wall Diaphragm f'c= 4000 psi. f'c= 4000 psi © f'c=~ psi f'g= 4500 psi Prestressing Wire: Diameter Before Drawing = .192 in. Diameter After Drawing = .168 in. Area(Aw) After Drawing = .0222 sq. in. Minimum Ultimate Tensile Strength,fpu.: 210 ksi. Reinforcing Steel: Bars-ASTM A615 Grade 60 Welded Wire Fabric-ASTMA185 Working Stresses: Maximum Allowable Compression Initial Concrete Stress, fc=0.55xf'c= 2200 psi Final Concrete Stress, fc=0.45xf'c= 1800 psi Maximum Allowable Tension For Prestressing Wire: Initial Stress fsi= 140 ksi Final Stress fse = 115 ksi Unit Wt. of Liquid= 62.5 #/cu.ft. I" ! · Sheet 2 of 47 NATGUM CORPORATION Design Engineers & Contractors Sheet WDC-1 Job No. 95Cll Project: COPPFT~. TX Date: 7/20/95 WALL DESIGN-CIRCUMFERENTIAL EFFECTS ***,******************************* NOMENCLATURE: r=Residual Compressire Stress in Core Wall= 200 psi. L-Stress Losses due to Shrinkage, Plastic and Elastic Shortening of the Core Wall and Relaxation in the Prestress Wire= 25 ksi. Min.fc=Minimum Final Prestress Force e Top of Wall= 240 psi. =Hydrostatic Hoop Force: k/ft. =Hoop Force due to Final Prestress: k/ft. =Hoop Force due to Initial Prestress: k/ft. N Nf Ni W R Hp H Tct Tcb =Unit Wt. of Liquid = 62.5 #/cu.ft. =Radius of the Tank= 92.5 ft. =Height of Wall Panel= 30.8333 ft. =Design Liquid Depth= 31.33 ft. =Core Wall Thickness @ Top= 5 in. =Core Wall Thickness @ Bottom= 9.5 Tcove =Effective Cove Thickness = 2 in. Y Tcy =Distance from the Liquid Surface Down7 ft. =Core Wall Thickness @ Y ft. from Liquid Surface Down~ in. MAXIMUM CIRCUMFERENTIAL PRESTRESS FORCE: Max. Nf=(WxRxH)+(rxTcbx12) = 203.93 k/ft. @ Bottom Max. Ni=(fsi/fse)xMax. Nf = 248.26 k/ft. @ Bottom Min. Nf=(Min.fc)xTctx12 = 14.40 k/ft. @ Top Min. Ni=(fsi/fse)xMin. Nf 17.53 k/ft. @ Top Nf Between the Bottom of the Wall and the Top Varies Linearly up to the Depth where Nf = 14.40 k/ft. and is Constant from that Depth to the Top. Check Core Wall Thickness; Tcb: At Base of Tank: Initial Compressiv, Stress in Core Wa117 fci fci=Max. Ni/[12x(Tcb+Tcove)] = 1.80 ksi <0.55f'c= 2.2 ksi Final Compressive Stress in Core Wall; fc fc=Max. Nf/[12x(Tcb+Tcove)] = 1.48 ksi <0.45f'c= 1.8 ksi S~ee~ 3 of ~7 NATGUN CORPORATION Design Engineers & Contractors Sheet WDC-2 Job No. 95Cll Project: COPPELL TX Date: 7/20/95 Check Core Wall Thickness; Tcb: (continued) Hoop Forces at the Top of the Cove: Nf=(WxRxY)+(rxTcy x12) = 192.01 k/ft. Ni=(fsi/fse)xNf 233.75 k/ft. Initial compresslye Stress in Core Wall at the Top of the COve; fci fci=Ni/(12xTcy) 2.08 ksi <0.55f'c= 2.2 ksi Final compresslye Stress in Core Wall at the Top of the Cove: fc fc=Nf/(12xTc~) = 1.71 ksi <0.45f'c= 1.8 ksi Core Wall Thickness: At the Bottom of the Tank, use a Precast Panel Thickness of 9 in. with .5 in. of Shotcrete Cover. At the Top of the Tank, use a Precast Panel Thickness of 4.5 ino with .5 in. of Shotcrete Cover. Cover Coat Thickness: Use 1.168 in. Plus .418 in. for each Layer of Wire Required Above I Layer. Approximately 24 Wires Per Layer is the Maximum Allowed for Proper Wire Spacing. Number of Wires Per Foot of Wall Height,n: At Bottom: N= Max. Nf/(fsexAw) = 80 Wires/ft. At Top: n=Min. Nf/(fsexAw) = 6 wires/ft. use cover coat Thickness= 3.5 1.25 in. at the Top. in. at the Bottom and Weight of Wall, Vw, k/ft. of Circumference. Vw= .15 k/cu.ft. x (Ttop + Tbot)x Hp = 3.71 k/ft. 2X12 , Sheet 4 of 47 NATGUN CORPORATION Design Engineers & Contractors Sheet WDC-3 Job No. 95Cll Project: COPPELL TX Date: 7/20/95 WALL DESIGN-CIRCUMFERENTIAL EFFECTS (Continued) *********************************** Number of Wires: n=Nf/(fsexAw) Where: Nf=(WxRxY)+(rxTcyx12) ;k/ft. Tcy=Core Wall Thickness ;in. fse= 115 7ksi Aw= .0222 ~Sq. in. Y (ft.) Nf No. of Wires Y(ft.) Nf No.. of Wires ***************************** I 17.96 7 16 109.93 43 2 24.09 10 17 116.06 46 3 30.22 12 18 122.19 48 4 36.35 15 19 128.32 51 5 42.48 17 20 134.46 53 6 48.62 19 21 140.59 55 7 54.75 22 22 146.72 58 8 60.88 24 23 152.85 60 9 67.01 27 24 158.98 63 10 73.14 29 25 165.11 65 11 79.27 31 26 171.25 67 12 85.40 34 27 177.38 70 13 91.54 36 28 183.51 72 14 97.67 39 29 189.64 75 15 103.80 41 30 195.77 77 31 201.90 79 31.33 203.81 27 Add 35 Wires at the base of the Tank Wall for additional Compression in the Cove. Add 30 Wires for Manhole Stress Plate. Total Wires Required = 1,437 ' Sheet 5 of 47 NATGUN CORPORATION Design Engineers & Contractors Sheet WDB-1 Job No. 95Cll Project: COPPELLTX Date: 7/20/95 WALL DESIGN-EFFECTS OF BACKFILL Lateral Soil Pressure: For Predominantly Nonplastic Granular Backfill with Ground Water Below Tank Floor, use Equivalent Hydrostatic Lateral Soil Pressure, Pe of 60 #/cu.ft. Note: Equivalent Hydrostatic Pressure Pe, Due to Earth Load is Assumed Somewhat Higher than the Fully Active Value, since the Tank Wall Produces Deformation More Nearly Corresponding to the At Rest Condition. Maximum Height of Backfill, HI>= 3 ft. (Includes 2' Surcharge Load) Hoop Force Due to Backfill; Nb, k/ft. Cover Coat Thickness @ the Bottom; Tco= 3.5 in. Thickness of Core Wall; Tcy, in. Wall Circumferential Effects: Max. Nb=Pex[R+(Tcb/12)]xHb = 16.79 k/ft. Nb @ Top of Cove;Nbc Nbc=PeX[R+(Tcb/12)]x(Hb-2.0) = 5.60 k/ft. Check Maximum Circumferential Stress With Partial Loss of Initial Prestress (15 ksi): Bottom fc=Max. Nb/[12x(Tcb+Tco+Tcove)] + Max. Nix(fsi-15ksi)/(fsix12x(Tcb+Tcove)) = 1.70 ksi<0.55xf'c= 2.2 ksi Top of Cove fc=Nbc/[12x(Tcy + Tco)] + Nix(fsi-15ksi)/(fsix12xTcy) = 1.90 ksi<o.55xf'c= 2.2 ksi ~ T II 7 Sheet 6 of 47 NATGUN CORPORATION Design Engineers & Contractors Sheet WDP-1 Job No. 95Cll Project: COpp~.T. TX Date: 7/20/95 WALL DESIGN-PRECAST W~T.T. PANELS ******************************* UNIT No. of UNITS INTERIOR EXTERIOR Type A Panel Arc Width Type A Panel Chord Width Type. A Panel Circu. Offset 36 15 ft. 2 7/8in. 15 ft. 2 3/4 in. 0 ft. 3 3/4 in. 15 ft. 2 7/8in. 15 ft. 2 3/4 in. Type B Panel Arc Width Type B Panel Chord Width Type B Panel Circu. Offset 1 6 ft. I 1/8in. 6 ft. I 1/8 in. 0 ft. 0 5/8 in. 6 ft. i 1/Sin. 6 ft. i 1/8 in. Wall Slot Width e Top Wall Slot Width @ Bottom 37 0 ft. 8 1/2 in. 0 ft. 8 1/2 in .... 0 ft. 9 1/4in. 0 ft. 10 in. Type A Panel Module @ Top 36 Type A Panel Module @ Bot 15 ft. 11 1/2 in. 15 ft. 11 1/2 in. 16 ft. 0 1/4in. 16 ft. i in. Type B Panel Module @ Top 1 Type B Panel Module @ Bot 6 ft. 9 3/4in. 6 ft. 9 3/4in. 6 ft. 10 1/2in. 6 ft. 11 1/4tn. Panel Weight = Panel Width x Panel Ht. x Panel Thickness x 150 #/cu.ft. Type A Panel Wt.= 39659 lbs. = 19.83 Tons Type A Panel Vol.= 9.79 Cu. Yds. Type B Panel Wt.= 15863 lbs. = 7.93 Tons Type B Panel Vol.= 3.92 Cu. Yds. MINIMUM VERTICAL REINFORCING-For temperature variation, effects of partial base restraint from pad, and effects of monolithic dome-wall joint. Inside Vertical Wall Reinforcing: Minimum As=0.0025xbxTy Outside Vertical Wall Reinforcing Minimum As=0.0025xbxTy NATGUN CORPORATION Design Engineers & Contractors DESIGN FOR PRECAST CONCRETE DOME NOMENCLATURE: Sheet PCD-1 Job No. 95Cll Project: COPPELL TX Date: 9/5/95 R=Tank Radius= 92.5 ft..G DR=Dome Radius = 230 ft td=Thickness of Dome ;in. p=Dome Live Load= 20 psf q=Dome Dead Load;psf h=Dome Rise ;ft. Geometry Half Opening Angle of Dome She11;a SIN (a) =R/DR = .4022 a= 23.71 Deg. Dome Rise; h h=DRx(1-COS(a)) = 19.4204 ft. = 19 ft. 5 in. Dome Design Dome Thickness: Either a Minimum of 4 in., or td(in) as required for Stability Try a 4 in. Dome Thickness; Therefore q= 50 psf Min.td=DRx[SQ.RT.(f.s.x(q+p)/(KxE))] Where: E=57,000x[SQ.RT.(f'c)] K = Buckling Coefficient = 0.25 f.s = Factor of Safety = 4 Min.td= 3.94 in. use 4 in. Dome Thickness. NATGUN CORPORATION Design Engineers & Contractors DESIGN FOR PRECAST DOME (continued) Buckling Sheet PCD-1A Job No. 95Cll Project: COPPELL TX Date: 9/5/95 The Critical Load for Buckling of Precast Concrete Dome is dependent' on the ratio of the connected area across the joint to the total area of the joint in accordance with: 2 Pcr = kxEx[td/DR] B And Pcr= f.s.xL 144 Where: Pcr= Critical Load; psi k = Buckling Coefficient; 0.25 E = 3823676 psi (Sheet PCD-1) L = Sum of p+q= 70 psf (Sheet PCD-1) f.s= Factor of Safety; 4 DR = Dome Radius= 230 ft. td = Dome Thickness= 4 in. B = The Square Root of the Ratio of Connected Area to Total Area. Pcr= 4 x 70 = 1.94 psi. 144 B=kxEx[td/DR] Pcr 2 B= 1.03 Length of Connected Area Required in the 15 ft. of Meridional Joint. 15 ---2 = 14.14 ft. B Use 2.5 ft. of Cast-in-place Concrete Strip. and 4 Welded Connections. Circumferential Joint has 100% connection across joint. ee-T 47 NATGUN CORPORATION Design Engineers & Contractors Sheet PCD-2 Job No. 95Cll Project: COPPELL TX Date: 9/5/95 DESIGN FOR PRECAST DOME (Continued) Membrane Stress Resultants @ Edge of Dome Live Load Thrust: NL = pxDR/2 = 2300 lbs./ft. Dead Load Thrust: Nd= qxDR/[i+COS(a)] = 6004 lbs./ft. Total Load Thrust: Na = 8304 lbs.ft. Approximate Maximum Compressive Stress in Dome Shell fc= Na/(12xtd)= 173 psi Dome Reinforcing Minimum reinforcing for temperature and shrinkage effects and to maintain integrity of the precast dome panels for buckling resistance is provided in the amount of 0.003xbxtd in the meridional direction. Min. As= 0.002xbxtd is provided in the circumferential direction. Min. As= 0.003x12x 4 = .14 sq.in./ft.Meridionally Min. As= 0.002x12x 4 = .1 sq.in./ft. Circumferentially , Use #4 @ 16 in. (As= 0.15 sq. in/ft.) Meridionally ** Use #4 @ 18 in. (As=0.13 sq.in./ft.) Circumferentially NOTE: * Additional Reinforcing Steel may be required for handling. ** ACI 318 Max. spacing. NATGUN CORPORATION Design Engineers & Contractors Sheet PCD-3 Job No. 95Cll Project: COPPELL TX Date: 9/5/95 Edge Region of Precast Concrete Dome The Distance along Dome Meridian to the edge of the Dome: S in ft. Where: S= 1.5x SQ.RT.[DRxtd/12] = 13.13 ft. Reinforcing Steel: Meridional: Top- Min. As= 0.003xbxtd= .14 sq.in./ft. Use #4 @ 15 in.(As= 0.16 sq. in/ft.) Extend the Top Meridional Reinforcing. 1/2 out a distance S: 13.13 ft. and 1/2 out a distance of 0.TxS: 9.19 ft. Bottom - Extend Typical Dome Reinforcing Along Bottom to Dome Ring. Circumferential: No additional steel required. Use typical dome circumferential reinforcing. NATGUN CORPORATION Design Engineers & Contractors Dome Ring Design Sheet DR-1 Job No. 95Cll Project: COPPELL TX Date: 9/5/95 Components of Thrust on Dome Ring: Horizontal: Live Load HL= NLxCos(a) Dead Load Hd= NdxCos(a) Total Horizontal Load;Ht = 2.11 kips/ft. = 5.50 kips/ft. 7.61 kips/ft. Vertical: Live Load VL= NLxSin(a) Dead Load Vd= NdxSin(a) Total Vertical Load;Vt 0.93 kips/ft. 2.41 kips/ft. 3.34 kips/ft. Dome Ring Force to be Resisted by Prestress: Live Load TL/2= HLxR/2= 98 kips Dead Load Td= HdxR = 509 kips Total Tp=Td+TL/2= 607 kips Number of Prestress Wires Required: n= Tp = 261 Wires Awxfse NATGUN CORPORATION Design Engineers & Contractors Sheet DR-2 Job No. 95Cll Project: COPPELL TX Date: 9/5/95 An Initial Prestress of 140 ksi provides full prestress and full allowance for losses for the full dead load plus 1/2 the live load. The remaining live load Thrust is resisted by reinforcing steel. Under full dead and full live loads, the wire working stress of 105 ksi and 20 ksi for the reinforcing steel, is not exceeded, but a slight amount of tension may exist in the dome ring. This approach minimizes the edge bending which results from excess prestressing for losses and liveload. Initial Prestress Force, Fdi, = fsi x Aw x n = 809.99 kips Dome Ring Force to be Resisted by Reinforcing Steel: As= TL = 4.9 sq. in. 2xfs Min. As=0.005xAdr= 1.95 sq. in. USE: 16 -#5 , As= 4.96 sq.in. Area of Dome Ring: The standard NATGUN Dome Ring provides an effective area of approximately, Adr= 390 sq.in. The nominal stress in this ring due to initial prestress, fc ring is held to a relatively low level, 400 to 900 psi, to provide a stiff ring which minimizes edge bending effects in the dome and wall panels. fc ring= Fdi-Td = .77 ksi Adr Use Standard Dome Ring Weight of Dome Ring: (Wdr per ft. of circumference) Wdr= Adr x 150 lbs./cu.ft.= 407 lbs./ft. = .41 k/ft. NATGUN CORPORATION Design Engineers & Contractors WALL DESIGN-VERTICAL RUBBER PAD BASE Sheet WDVR-1 Job No. 95Cll Project: COPPELL TX Date: 9/5/95 Load on Rubber Pad - Dead Load of Dome, Dome Ring and Wall: Dome (see Sheet DR-l, Dead Vd) See Total Load per ft., W = 2.41 k/ft. = 0.41 ~/f/~ = 3 · 71 k/ft. = 6.53 k/ft. Total Load on Pad, Wp= (Avg. Mod.Width)xW= 53.75 kips 2 Pads Rubber Pad Design at Wall Base: Trial Size of Pad 5 in.x i in.x 51 in. Shape Factor = Loaded Area on Top = 5 x 51 = 2.28 j Free Area 2 x i x( 5 + 51 ) NOTE: Free Area= Side Area Plus End Area. From Graph I: Allowable Compression;C= 224 psi Required Pad Area= 1000 x Wp = 240 sq.in. C Use 2 pcs. of 40 Durometer Pad 5 in. wide x in. Long per Wall Panel. Pad Area= 255 sq.in. i in. thick x 51 I000 - 90O Sheet 14 of 47 600 7OO 1- 015OO Z 0 ~ 4 6 SHAPE · FACTOR' I I LIMIT FOR OCCASIONAL. LOADING 0 I0 20 50 40 SO PERCENT COMPRESSIVE DEFLECTION ~OH Compress;on Stress-Strain Curves for 40 I)urorneter Rubber h/ALL BASE PAD DESIGN - GRAPH I ll:; T 11 I NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245-3279 JoB ~'~p/c~//j 7~ Sheet 15 of 47 SHEET "O. /~/ OF CALCULATED BY '""~""'/'~'~/ DATE ?'//8/f~' CHECKED BY .~/1~,.~ DATE 2'2'~'¢~'-/4''''' SCALE NATGUN CORPORATION 1:1 Teal Road WAKEFIELD, MASSACHUSETTS 0:1880 (617) 246-1133 FAX: (617) 245-3279 SHEET.O. .~.2 O~ CALCULATED BY '~lt"/V/ DATE CHECKED BY ~ DATE 47 SCALE .......... i ......: .........; ......!z,~ .....,~...i..~~..~ ..................... ......................: ..! ..................~ ........................ ..................' ..............i ......... ~ ....~ ...........~~: ~ ~ .....·~: ~ ........................................ ............................... ~ .........~.~//~.~ ,~~ ~:~ ~ ~ .................... ~ ,~ ..................~ ....~ ........~ .........~ ...........~ ..................~ ............~ ............~ ....................~ ...........~ .......................~ .............~ ..............~ ..............~ .........................~ .................................~ ~ ...................... ~ .......~ ..... ~ : - .................~ ............; ~ E ~ .' ~ s s :; .... ................................ ~ ; ........ : ~ ~ ........~ ........~ ........ : ................... ; ......; ........~ .......~ ............~ ...............................~ ..............~ ..............~ ................... .......... ~ ~//,~,~~,;~...~ z~.~ ,~ ~ ........................................................... .................. .. ~ ........................~ ........ __ - ~ ~ ; ~ ...... ~ : .....................~ ..... , ~ : ............... ;, ~ ....~ ..... :: ................................ ~ ....... ~ ...........................~ ..... ...... ~ ; ; ..... ~ ~ ; .... ~ ........~ ......~, ~ .....: .............................................. " ~ .~;~ ~.~.J ,,~...~,,~.~ ~. ,s,~ ~,J ~,/, ... ............................ ....... ........ ~ .... : .... , · : · ....... . . . ....... : ....; .....: ~=~. ...... ..................... ~.~.~/~.H~..; ..........~..~ .~-.~,~..~--~c~,~-L ...................................~ ............... ............. .~ .........~. ~o~ ~ .......L~.~ ......~2..~.~, ~ .......~ ....~ .................................................................... ........... ~,~,~ ~ ~ ~ .........., ......~ ..........~ .....; ~ ....~ ..................... .......... ~.~ ~.~. ~... ~ ~.,~...~. ~ ..~.~...~...,~... ,...~,~ ................· ....................~ ..............~ ....... ...... ? .............~ .............~ ....... ~ODUCT D~I A B: ~ E F NATGUN CORPORATION 11 Teal Road SHEET NO, ,/,~,~lm OF WAKEFIELD, MASSACHUSETTS 01880 CAUCUt. ATED ev -'~',,"q DATE (617) 246-1133 FAX: (617) 245-3279 CHECKED BY ""~f,~ DATE SCALE Sheet 17 of 47 2'-,Z Y - ~r" PRODUCT DS82~1 A B C D E F NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245-3279 Joe ,"~,,p/*~-,'~/ S.EET.O. CALCULATED BY SCALE OF DATE DATE Sheet 18 of 47 7/:'0 NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245-3279 S.EET .0. "~'-~" CALCULATED BY CHECKEDBY SCALE Sheet 19 of 47 OF 77"/= ~/= f~o,i<s'~.(o.oo,I. ) ~ Z = 5~.14~ o- ooz# NATGUN CORPORATION 1], Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245*3279 Jos /'f'-o~,p~*///~",v' Sheet 20 of 47 CALCULATED BY ""~"'/f'~ DATE SCALE PRODUGT~I ABCDEF NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245-3279 SHEET "O. P7 CALCULATED BY .er*/ef/ DATE CHECKED BY .,q~,,~,.~9 DATE SCALE Sheet 21 of 4' 7 -2 7- ~'.f' PRODUCT DS625-1 A B C D E F NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245-3279 SHEETNO. tf~7 CHECKED BY "~'~ SCALE Sheet 22 of 47 OF OATS 7/Z ! ............................................ ..T..~Lu.P__~r...~. A=~. L.J~:~,/,'-'r"e-,z.Lo,,-.c~ - G,'=3' r---.~'2' ........................... · . L...~;~'n+ oF 'T',~.,,J.K,.'5~c-u..,~A~ T'~ ~ea....-- '::r,g~,F,-r" ....................................................... ..................... ~ ..... ~,,=~s . ........................... i ........... v,/,~-T.c~ ~.~r_.,~ s .'{'~' r,,z.+'~/r-~.,'" !~5.5"/,=-~=i..I,~s5 v"/,,.r'." wc~"E-.p..-(...o~o..; .'='t~.s ""[r--r4' ,/. (,,,3 n---.--'r2''' = I.'~'~,,:..!,7 ....................................................... F::::hG~ C---.k.PAr_-~.'r"~: 2... e::, >' ;.?-,9~4'<;'Y' ,*, .~.i,r_.-., ........................ PRODUCT ~5625-, A B C D E F NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245-3279 ~o~/'?-~/n/n~///3P~ Sheet 23 Of 47 SHEET NO, ,,~E"I,/ OF CALCULATED BY "'~"'P""J DATE CHECKED BY ~ DATE SCALE NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (61,7) 246-1133 FAX: (61.7) 245-3279 SHEET NO. CALCULATED BY SCALE Sheet 24 of 47 OF DATE DATE PROOUCT DS625-1 A B C D E F NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245-3279 ~oe ~-/',:,/o/,:,,//j T~ SHEETNO. CALCULATED BY CHECKEDen, SCALE Sheet 25 of 47 OF DATE '7"/'~.~/q ~ DATE 7 '2.,7 ',~,-~ PRODUCT DS~5-I AeCOEF · NATGUN CORPORATION joe /?-~/-y~/// )'x Sheet 26 of 47 11 Teal Road SHEET NO. ,/~/--4 OF WAKEFIELD, MASSACHUSE~S 01880 (617) 246-1133 CALCULATED BY -<~ DATE F~: (6/7) 245-3279 CHECKED BY ~~ DATE SCALE ........... ~, ..... ~ ................ ~ ...... ~ ~ ~ ; ......... + .... ~ ...... ~ ....... ~ ............. ~ ...................................... ~ ..... + ........... ~, ........ ,. ........... ~ ............................................................. ~ ...... .............. ~ ........... ~: ........ ~ ;,e~:..~~ ........... ~ ..................................~~~ ........~ .........~ ........~ .............~ ...............~ ...........~ .............................~ ....................~ .........~ ...............................~ .....................~ ....... .................. ~ ...............~ ....~., ~...~ ,-.....~.~. · ~...x ...........'x, 7,~ .......;.+~,~ .................................................................. ..................... , :~ .....:.~y/:~...~~ ~~}= ~,.-~.~, = ~. ~ ~ ~'.:~, .../.rs,d.~.~ ........~ ................................ .......... ......... .... ..... ............................. ........ ......... ~ ~ ....~ .........~ ~ ...~. ...~.~ ..~~ ~.~ ... ~. ~ ~...=...,~.' ...,:~ .....~ ~ ........~ .........~ .............~ ..............~ ......... ......... ~ ........~4~,~ ~~ ~~ ~.~ .~ ...............~ ..................~ ........................................~ ......................................... ................... ~ .....................~..' ...... ..............~ .........~ .........................~ .................................... ...................... ~ ...........~ .....~~ ~~+,~,~. ..~s~z ~~~......~..~...~....~ ....................................... ................... ~ ..............................~ ~ .......~ .~ . ~ ....................... ~ ~ ~ ....~ ~.~,~a~ ....~ ~~.~ ~.~ ..........~ ........ .......... ~ .......~,..~,~ ~. , ~ . ~ . ~ ~ ~,.~ .....~ ~ ~ ,~ ,~ ..... ...... ~L s~ ~, ~ ~ ~. ~/, ~ ~ ./, ......... ~ = ............ ~ .......~ ~ ~ ~ ~ ..... ~ . : .....~ ....~ ............~.~ ............~ ......... ........... ~ .....~ ......~4~fi~a.~ .....~ ~~~..~_ ..........~.~ ~ ..........~ ............................... ........... ~ ~ - ......... ~ ........................................................ ............. ~Z$/~ ~, ~.. ~ /rs./~~ .....~ ....~,~'~ ~ ........................ ~. : ............................................................................................................................ ................... ~ ...................~ : ~~/r~ ~t o:.o ~ o ~ -- ~ ~ : .... ~ ~ ~ .........................................; ..................................~ ..........~ ..........~ ...........~ .............~ .............~; ........... ............................... ~;~.s/r~ ~ .....L. ~o'. ....../~,/~ .....~ .........~ ~/.~,,~ ..../.~z,~ ....... ............................................... ~ ........... ~ ...................... ~ .............. = ..................... ..... ~ ...... ~...~:~~ . ~ ~. ~. ~u~.~,'/,.~. ~..~..=..~.. ,~.,~.......,.~..~...~,..~..=.~,~.~..~ ................... ~ ......... ~ ........................................ ~ ~..R b. ~ ..................................... :: ...... ~ .................... ;: C ,= ..... ........ ~ .......... ~ ~ .......~ ~ ................. T ......T .............~ .........~ ', ...............C :~ ; .....~ =/~. '.~..~(a.: ~ '4~ ~..~ /4. PRO~CT D~I A B C D E F I T NATGUN CORPORATION 11 Teal Road WAKEFIELD, MASSACHUSETTS 01880 (617) 246-1133 FAX: (617) 245-3279 JoB/'?~J'F",///2'~ Sheet 27 of 47 s.~v .o. ,,C'Z-.¢' o~ CALCULATED BY "~','P~ DATE 7/~/tff CHECKED BY ~ DATE ~'~ ~ ' ~¢ SCALE ~ .......~ ..........................................: .............................................................................................................................................= .............~ ................... /z,,o,- ..<zJ ABCDEF Sheet 28 of 47 NATGUN CORPORATION Design Engineers and Contractors Sheet S1 Job No. 95Cll Project COppErT., TX Date 7/20/95 Sheet of Seismic Design ************** Note: For Definition of Nomenclature, Refer to 1. AWWA D-110 Standard for Wire-Wound Circular Prestressed Concrete Water Tanks. 2. NATGUN Precast Prestressed Concrete Tank Design. Dimensions and Criteria: Wall Height; Hw = 31.25 ft. Liquid Depth; H = 30.33 ft. Inside Tank Dia.; D = 185 ft. and R= 92.5 ft. Corewall Thickness; Tc in. Corewall Thickness @ Top; Tct - 5 in. Corewall Thickness @ Bottom; Tcb z 9.5 in. Weight of Wall; Vw z 3.71 k/ft. Weight of Dome & Ring; Vd+Wdr - 2.87 k/ft. Unit Weight of Liquid; W = 62.5 #/cu.ft. f'c for Tank Wall = 4000 psi f'c for Tank Foundation = 3000 psi Prestress fpu = 210 ksi Prestress Initial Stress; fsi = 140 Prestress Final Stress; fse = 115 ksi Residual Compressive Stress in Core Wall; r = 200 psi Min. fc @ Top of Wall = 240 psi Seismic Zone = 1 Zone Coef. (Table A1); Z = .1875 Importance Factor (Table A2); I = 1 Structure Coef. (Table A3); K = 3 Site Amplification Factor (Table A4); S = 1.5 Modulus of Elasticity of Concrete; E = 3604997 psi. No. of Base Pads; n = 74 Thickness of Base Pad = i in. Compressed Thickness of Pad; tr = .9 in. Pad Width; wr= 5 in. Pad Length; lr = 51 in. Shear Modulus of Pad; Gr = 60#/in/in. Pad Spacing; Sr = 7.854 ft. Curve Factors; D/H = 6.1 R/H = 3.05 · Sheet 29 of 47 NATGUN CORPORATION Design Engineers and Contractors Sheet S2 Job No. 95Cll Project COPPELL, TX Date 7/20/95 Sheet of Compute Weights.: Ws=Wt. of Tank Wall=PIxDxVw= 2156.2 k Wr=Wt. of Dome=PIxDx(Vd+Wdr)- 1668 k 2 Wt. of Liql/id=PIxDxHxW/4= 50954.9 k Wi=Wt. of Effective Mass of Liquid; Impulsive=Wtx(W1/Wt) See Fig. A.4 for (W1/Wt) ~ .189 = 9630.5 k W2=Wt. of Effective Mass of the First Mode Sloshing Contents of the Tank; Convective=Wtx(W2/Wt) See Fig. A.4 for (W2/Wt) = .749 = 38165.2 k Compute Moment Arms Relative to the Tank Base: Dome ArmHw = 31.25 ft. Wall Arm Xs = Hw/2= 15.6 ft. C.G. of Lateral Seismic Force Applied to W1 Impulsive X1 = 11.374 ft. See Fig. A.5 for X1/H = .375 C.G. of Lateral Seismic Force Applied to W2 Convective X2 = 15.8 ft. See Fig. A.5 for X2/H = .5210001 Compute Initial Radial Displacement Due to Prestress, Ri P=(fsi/fse)xHxW= 2307.72 Max. Ni=PxR= 213464.1 fc=Max. Ni/Tcb= 1.87 Ri=fc x R/E= .58 in. psf #/ft. ksi Sheet 30 of 47 NATGUN CORPORATION Design Engineers and Contractors Sheet S3 Job No. 95Cll Project COPPELL, TX Date 7/20/95 Sheet of Compute Base Stiffness~k: Stiffness by Pads k =28S(Grxwrxlr)/(trxSr)= 51948.2 Compute Natural Period of Tank; Ti: Ti=SQR(8xPIx(Ws+Wr+W1)/(gxDxk))= 1.05 Sec. T1<=2.0 Sec. #/ft./ft. Compute C1: C1=1/(15xSQR(T1)), C1<=0.12 and ClxS<=0.14 Therefore Cl = .065 Compute C2: The First Mode Sloshing Wave Period Tw=-Kp(SQR D)= 10.745 from Figure A.3, Kp= .79 2 C2=0.75/Tw=- .006 Sec. NATGUN CORPORATION Design Engineers and Contractors Sheet 31 of 47 Sheet S4 Job No. 95Cll Project COPPELL, TX Date 7/20/95 Sheet of Compute Base Shear Due to Seismic Forces at Base: V=ZxIxKxSx(CIx(Ws+Wr+W1)+CaxW2)- 931.1 k Check Max. Allowable Shear Resistance by Friction: Since V < Umax(Ws+Wr)- 1912.1 k Shear Resistance by Friction is OK Where: Umax - .5 Compute Overturning Moment @ Base of Wall: M=ZxIxKxSx(Clx(WsxXs+WrxH+WlxX1)+C2xW2xX2) =13766.1 k-ft. Check Uplift due to Overtuning Moment:' 2 Since M < 0.785xWt.xD= 176779.6. k-ft. Where wt. = (Ws+Wr)/(PIxD) = 6.58 k/ft. No Uplift Check Shear Stress in Pad: Average Shear Force/ft.=V/(2xPIxR= 1.6 kLf. Pad Shear Stress-V/(nxwrxlr)= 49.3 psi Since the Allowable Occasional Load=100 psi Pad Shear Stress is OK (from Graph 2) Sheet 32 of 47 NATGUN CORPORATION Design Engineers and Contractors Sheet S5 Job No. 95Cll Project COPPELL, TX Date 7/20/95 Sheet of Check Lateral DisplaCement of Tank; rs=V/(PIxRxk)= .74 in. Reasonable for Waterstop Deflection Compute Vertical Acceleration; Uv= Natural Period of Vertical Acceleration of Tank Contents; Tv: Tv=2xPIxSQR((WxDxHxH)/(24xgxTcbxE))= .13 Sec. Compute; C3: C3-1/(15xSQR(Tv))z C3<0.12 and C3xS<=0.14 Therefore C3 = 9.000001E-02 Fraction of Horiz. Acceleration to be used as Vertical Acceleration; B= . 25 Kv=2 Uv=ZxIxKvxSxC3xB= .01 Check Maximum Compressire and Tensile Forces Due to Gravity Load and Earthquake Induced Overturning Moment. + 2 Pc,t=Wt/ 2x(1-( .273xM/(DxWt))) Where wt=(Ws+Wr)/(PIxD)= 6579.9 #/ft. Pc= 591 #/in. Compression Pt= 0 #/in. Tension · Sheet 33 of 47 NATGUN CORPORATION Design Engineers and Contractors Sheet S6 Job No. 95Cll Project COPPELL, TX Date 7/20/95 Sheet of Check Pad Compressive Stress: Net Effective Pad Width Wn=wr-rs= 4.26 in. Pad Stress=PcxSr/(Wnxlr)- 256.4 psi. Shape Factor of PadIWnxlr/(axlx(Wn+lr))= 1.97 Occasional Load Limit (Graph 1)= 421 psi. Check Compresslye Stress on Concrete: Compressive Stress= 256.4 psi. Allowable Concrete Compression=1.25(0.45 f'c)= 1687.5 psi. · Sheet 34 of 47 NATGUN CORPORATION Design Engineers and Contractors Sheet S7 Job No. 95Cll Project COPPELL, TX Date 7/20/95 Sheet of Check Vertical Bending due to Radial Resistance of Base Pads: Peak Radial Shear Force;Qo=Vp/(2xPIxR)= 1.6 kLf. MaximumMoment;Mr=0.24xQoxSQR(RxTcb)= 3.29 k-ft. Maximum Moment Located above the Tank Base=0.68xSQR(RxTcb)= 5.82 ft. Reinforcement=Mr/(fsxJxd)= 2.01/d Where: fs=i8ksix1.25=22.Sksi. J=0.875 sq. in./ft. · Sheet 35 of 47 NATGUN CORPORATION Design Engineers and Contractors Sheet S8 Job No. 95Cll Project COPPELL, TX Date 7/20/95 Sheet of Circumferential Effects: Nomenclature: Y = Distance Measured up from Tank Base in ft. Pio - Dimensionless Impulsive Pressure Coef. from Fig. A.6. Pco - Dimensionless Convective Pressure Coef. from Fig. A.7. Nh = Hydrostatic Circu. Force in k/ft.=Wx(H-Y)xR. Ni = Impulsive Circu. Force in k/ft.=ZxIxKxSxClxWlxPio/R. Nc = Convective Circu. Force in k/ft.=ZxIxKxSxC2xW2xPco/R. Ns = Hydrodynamic Seismic Circu. Force in k/ft.=SQR[Ni+Nc+(NhxUv)] Nt = Combined (Ns+Nh). Nf = Final Prestress Circu. Force in k/ft.=Nh+rxTc. Min Nf = Final Prestress Circu. Force @ Top in k/ft.=MinfcxTcx12. Aw = Prestress Wire Cross Sectional Area = .0222 sq.in. n = No. of Prestress Wires=Nf/(fsexAw). Nu = Max. Allowable Prestress Circu. Force in k/ft.=0.7xfpuxAwxn. Nr = Resultant Residual Circu. Force in k/ft.=Nf-Nt. See Sheet S9 for Circumferential Force Values. Sheet 36 of 47 NATGUN CORPORATION Design Engineers and Contractors Sheet S9 Job No. Project COPPELL, TX Date 7/20/95 Sheet of 95Cll CIRCUMFERENTIAL FORCES: R/H - 3.05 Y Y/H Pio Pco Nh Ni Nc Ns Nt Nf Nu Nr 30 1.00 0.00 0.96 0.0 0.0 2.0 29 0.97 0.09 0.95 5.8 0.5 2.0 28 0.93 0.20 0.94 11.6 1.1 2.0 27 0.90 0.28 0.93 17.3 1.6 1.9 26 0.87 0.35 0.93 23.1 2.0 1.9 25 0.84 0.43 0.92 28.9 2.5 1.9 24 0.80 0.52 0.91 34.7 3.0 1.9 23 0.77 0.59 0.90 40.5 3.4 1.9 22 0.74 0.66 0.89 46.3 3.8 1.9 21 0.70 0.74 0.89 52.0 4.2 1.9 20 0.67 0.80 0.88 57.8 4.6 1.8 19 0.64 0.86 0.87 63.6 4.9 1.8 18 0.60 0.93 0.87 69.4 5.3 1.8 17 0.57 0.98 0.86 75.2 5.6 1.8 16 0.54 1.03 0.85 80.9 5.9 1.8 15 0.51 1.08 0.85 86.7 6.2 1.8 14 0.47 1.14 0.84 92.5 6.5 1.8 13 0.44 1.18 0.84 98.3 6.7 1.8 12 0.41 1.21 0.84 104.1 6.9 1.8 11 0.37 1.26 0.83 109.8 7.2 1.7 10 0.34 1.29 0.83 115.6 7.4 1.7 9 0.31 1.32 0.83 121.4 7.5 1.7 8 0.27 1.35 0.82 127.2 7.7 1.7 7 0.24 1.37 0.82 133.o 7.8 1.7 6 0.21 1.39 0.82 138.8 7.9 1.7 5 0.18 1,41 0.82 144.5 8,1 1,7 4 0.14 1.43 0.81 150.3 8.2 1.7 3 0.11 1.44 0.81 156.1 8.2 1.7 2 0.08 1.45 0.81 161.9 8.3 1.7 i 0.04 1.46 0.81 167.7 8.3 1.7 0 0.01 1.46 0.81 173.4 8.3 1.7 0 0.00 1.46 0.81 175.4 8.3 1.7 2.0 2.0 14.6 19.6 12.6 2.1 7.9 18.3 26.1 10.4 2.3 13.9 24.4 32.6 10.6 2.5 19.8 30.6 39.1 10.7 2.8 25.9 36.7 48.9 10.8 3.2 32.1 42.8 55.4 10.7 3.6 38.3 49.0 65.2 10.7 3.9 44.4 55.1 71.7 10.7 4.3 50.6 61.2 78.2 10.7 4.6 56.6 67.4 88.0 10.7 5.0 62.8 73.5 94.5 10.7 5.3 68.9 79.6 104.3 10.7 5.6 75.0 85.8 110.8 10.8 5.9 81.1 91.9 117.3 10.8 6.2 87.1 98.0 127.1 10.9 6.5 93.2 104.2 133.6 10.9 6.8 99.3 110.3 143.4 11.0 7.0 105.3 116.4 149.9 11.1 7.2 111.3 122.5 156.4 11.3 7.5 117.3 128.7 166.2 11.3 7.7 123.3 134.8 172.7 11.5 7.8 129.2 140.9 182.5 11.7 8.0 135.2 147.1 189.0 11.9 8.1 141.1 153.2 195.5 12.1 8.2 147.0 159.3 205.3 12.4 8,4 152,9 165,5 211,8 12,5 8.5 158.8 171.6 221.6 12.8 8.5 164.6 177.7 228.1 13.1 8.6 170.5 183.9 237.9 13.4 8.6 176.3 190.0 244.4 13.7 8.6 182.0 196.1 250.9 14.1 8.7 184.1 198.2 254.2 14.1 NOTE: Nu Shall be Greater Than Nt. Sheet 37 of 47 as, s, Tank Wall Tank Wall Grout ,~ ~.e :~ Waterstop Fixed Base HInged Base A. Relnfol~ed Nondialing Base (See. A,2.1[a]) Tank Waft -- Flexible Base Pad B. Anchored Fiexjble Base (Sac. A.2.1[b]) C. Unanchomd and Uncontalned FlexJob Base (See. A.2.1[e]) Flexible Containment Pad $penge Rubber Flexible Base Pad D. Unmnchored and Contained Flexible Base (Sac. A2.1[cl]) Figure A.I Types of Joints Used Between the Wail and Foundation of Concrete Water-Storage Tanks 3 ('i Note i ~ This mep li based on American Netlonel 8tsndsrd A68.1-1ee~. Eli .. 100 ~ 300 400. 600 Miles hie PRESTR.~SS~ONCP,,FF~ TAN'KS Sheet: ~ o~ ~.7 Table A. ! Zone Coe~dent Zone' Z I 0.1875 2 0.375 3 0.75 4 1.0 *For dcze.-rninafion o[ zone, see Figux~ .~2.~ and r~nt A.21. Milfl Alaska uai C~ 0 I oa~u /~ 2 Maui 3 .~.w.,,k ' :' HawaII Note This map is ,~ased On Amer.ca- Nat:'=- S:a-ca': A58 '-":~,2. RgureA.2s SeismicZone Map of Nonconcinencal United States l~or Determining Zone Coelfident From Table A.! Table A.2 Importance Factor Sheet 40 of 47 Tank Use Tanks that must re,,~,~,, mable, with sligh~ struaura] damage, for emugen~ purposes afttr an orthquakc Tanks that must remain usable, without signScant leakage, but may suffer repairable structural damage Table A3 Structure Coeffident for Type of Tank Tan~ with a reidot-,td nonsliding base (See. A.2.1 [a]) Tanks with an anchored t~en'bit base (See. A.2.1 [b]) Tanks with an uz~nchomd and uncontained fien'bk basc (Sec. A.2.1 [c]) Tsnks w~th an unanchor~l and ranrained flexible bsse (So, c, A, lt [d]) Stzucnsre C, ocfFzcient 2.00 1,33 3,00 2.00 Table A4 Soil Profile Coeffident Se8 Pro~e Type Soft Pro/fie Coefficient* ,4 B C ,~ 1,0 1.2 1.5~ ~T~cf~n~sm~hna~n~r~r.~cdetmnin~ti~ft~s~i1~mF~cca~c~m~thissha~k~~~S~nm cank ~.spons~ shall b~ cscabiisk. d basccl on tb~ followln~ th~ s~ pid"~ kon: I. $dl Fro/ile rypr .4 ~ · pn~',u. with a. Rock of any rJ~rac-,cristic, either sbak-likc or crFscslfine in utm?. Such material may be cbarmacrizzd by · shear wave vekx:it7 greater than 2500 fps. b. St~F soil cocdifions zherc the soil depth is less chats 200 ~t and the soil tylxs overlying rock are stable deposits of sands, gravels, or s tiff ch.vs. 2..~oi;,~r~/~/e ~.v~ .~ is a prd:.'e srith deep cohuionkss or stiff clay conditions, including sites where the soil depth exceeds 200 ~z and -,be soil t?.~cs ovcr|.v~g rock tre stable ~e;~osiu of' stnds, Znvets, or stiff cls.vs. 3. S~r,~ra/i/~ z,v~e C is a pro~-~, with soft- to medium-stiffchys and sands, characterized b.v 30/z or znorc of sofT. to medium=silL'relay with or w~ehout interveei,~,. '-.vcrs of sand or other cohesionless soils. In locations where Re s~il prof tie t]q3e is not known in suf~cient detail to determine ~be soil prof'~ type, soil profile C shall be assumed. Hgur, ~3 Sheet 1J 0.5 J O 1.0 2.0 3.0 DIH 5.0 6.0 7.0 &O Curve For Obtainins Factor K for the Ratio D/H 41 of 47 AwwaDtlO.46 Sheet 42 of 47 Rgure A.4 0 0 1.0 2.0 3.0 4.0 5.0 6.0 O/H Curves ~or Ob~ning Factors W~/Wt and Wz/Wt for the Ratio D/H ~.0 0.8 ~ X~ H figure A.5 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 O/H Curves For Ob~ning Factors X~/H and Xz/H for the Ratio D/H 8.0 Sheet 43of 47 I000. 900 ~ ~B 800 70O , i j j / / · /. J /,, I/ d I SHAPE I6 FACTOR' I ! ~0 LIMIT FOR .~~~'!ii-/- ..... "": -' 'OR FREGIUE~T LOADING .40H 0 tO 20 ~50 40 50 PERCENT COMPRESSIVE DEFLECTION Compress;on Slress-Slrain Curvet f~' 40 Duromefer Rubber WALL BASE PAD DESIGN - GRAPH I I' Sheet 44 of 47 25O 2OO ~150 It A 8.0H'7.0 H C 60H 50 H H C 50¸ 0 ,5 1.0 1.5 ZO SHEAR DEFLECTION ~ Linear Shear Movement Limifa for Continuous or Frequent Losetint Line A-A Limits for 0cczs~oul Loadin~ Line B-B 2.5 ~.0 Rotsfive Shear Movement Line B-B Line C-C Shear Stress-Strain Curves. The shezr limit lines &re ~o be used a4 shown above. k/ALL BASE PAD DESIGN - GRAPH 2 ; .... I' A~W'ADIIO..8~ SHEET 45 of 47 V fY ,I Pi (~,) ,: Oimclkm of 1.0 0.8, 0.4 0.2 R/l;: 1,0 ~1.5 2.0 0 o 0.3 0.6 0.9 1.2 1.5 Figure A.6 Dimensionless Impulsive Pressure Coeffident ! T fY 1 o0 mm 0.5 PR. ESTItESS~N~ TANKS Sheet 46 of 47 Pcfd,)-Pcox~.Scos4,1S-'4coszd,-'&sJaZ4,S .! .0imctimo~ - .0 1 .S 2.0 2.5 3.0 r ' r 0.4 0.2 0 0.25 0.5 0.75 1.0 1 Rgure A. 7 Dimensionless Convecffve Pressure Coefficient NATGUN CORPORATION Desdgning Engineers & Contractors l~-7s Sheet 01~-1 Location ~r~P--'J"~ / By ~'~ Date Checked 5m ' Date Job No. ~S el{ SHEET 47 of 47 OVERFLOW DESIGN Required Flow, Q LenKth of Weir, L Q - 3.33Hs/2 per foot L = Q , 3-33Hs/z 3.33x<'|.~)''~ MCD x 1.5472 - ~.~4cfs Q = Flow,. cfs H - Head, ft. L = Length, ft. Discharge Pipe,Size Try Velocity V = 15ft/sec. = 2,QG ft. iMin. = 3,14 ftm ft. Conical Weir Box D - 1 Vel.Head (Disregard Entr.Loss) D - I'- q' Use ~l., J' dia @Top, L - II-oo ft. P;pe , v COKICAL WEIR e_EC TIGN li